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The literature is rich in mobility models that aim at predicting human mobility. Yet, these models typi- 

cally consider only a single kind of data source, such as data from mobile calls or location data obtained 

from GPS and web applications. Thus, the robustness and effectiveness of such data-driven models from 

the literature remain unknown when using heterogeneous types of data. In contrast, this paper proposes 

a novel family of data-driven models, called MobHet, to predict human mobility using heterogeneous 

data sources. Our proposal is designed to use a combination of features capturing the popularity of a 

region, the frequency of transitions between regions, and the contacts of a user, which can be extracted 

from data obtained from various sources, both separately and conjointly. We evaluate the MobHet mod- 

els, comparing them among themselves and with two single-source data-driven models, namely SMOOTH 

and Leap Graph, while considering different scenarios with single as well as multiple data sources. Our 

experimental results show that our best MobHet model produces results that are better than or at least 

comparable to the best baseline in all considered scenarios, unlike the previous models whose perfor- 

mance is very dependent on the particular type of data used. Our results thus attest the robustness of 

our proposed solution to the use of heterogeneous data sources in predicting human mobility. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The analysis of human mobility patterns can assist in the design

f various mechanisms to help improving the quality of services

hat support urban life [1] . For example, the knowledge of typical

atterns of human mobility within a target geographic area, such

s a large urban center, can drive the management and planning of

ransportation routes to minimize the chance of congestion during

eavy traffic periods and the planning of urban occupation, as well

s support decisions towards a faster contention of the spread of a

isease [1,2] . Moreover, such knowledge may also support a more

ost-effective planning of the infrastructure of mobile phone net-

orks [3] , thus improving the quality of service offered by carriers.

nderstanding human mobility within a particular region is also

 key step towards building human mobility prediction models,

hich can support the design of various services, such as location-

ased recommendation systems [4–6] . 
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Focusing specifically on human mobility prediction, recent stud-

es have shown that human mobility in urban areas can be fairly

redictable considering daily routines [5,7] . Yet, most mobility pre-

iction models available in the literature [8–11] have been pro-

osed or at least evaluated considering only a single type of data,

uch as data associated with mobile phone calls or georeferenced

ata collected from GPS and web applications. The use of differ-

nt types of data from heterogeneous sources, however, can lead to

ore accurate mobility predictions or at least to a larger coverage

f the population [12] . Although some previous prediction models,

roposed specifically in the context of location recommendation,

o exploit data from different sources, such sources are often dif-

erent Web applications (e.g., Twitter and Foursquare) [13] , which

hare common aspects (e.g., mobility inferred from user check-ins).

o the best of our knowledge, no previous study investigated the

rediction of human mobility by combining data from as hetero-

eneous sources as mobile phone calls and online social networks

e.g., Twitter). 

In this context, this article presents a novel family of data-

riven models, called MobHet, to predict human mobility using

eterogeneous data sources. The design of the MobHet models

ombines principles and assumptions explored by two existing
n mobility using heterogeneous data sources, Computer Commu- 
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Table 1 

Adopted notation to model the human mobility prediction. 

Variable Definition 

U Set of users 

R Set of regions 

T Set of time windows 

D training Training set composed of tuples < u i , r j , t k > , 

where u i ∈ U, r j ∈ R , and t k ∈ T , used to learn 

the human mobility patterns and to derive the 

prediction models 

D test Test set composed of tuples < u i , r j , t k > , where u i 
∈ U, r j ∈ R , and t k ∈ T , used to evaluate the 

prediction models 

p j Popularity of the region r j ∈ R , learned from 

D training 

h j 1, j 2 Frequency of transitions between r j 1 and r j 2 , 

learned from D training 

w j 1, j 2 Weight of edge ( r j 1 , r j 2 ), learned from D training 

d Parameter used to define the size of a region: it 

may be the size of the side, in the case of square 

regions, or the radius in the case of circular 

regions 

f dist Distribution of distances traveled by a user u i ∈ U 
during a movement 

f pause Distribution of time intervals between successive 

movements of a user u i ∈ U (i.e., pause times) 

t max Max number of time windows in D training 

C i Set of contacts of user u i ∈ U , learned from D training 

L i, j, k Event user u i is located in region r j during time 

window t k 
m The minimum number of contacts of all users 

C ≥m 
i, j,k 

Event at least m contacts of user u i are located in 

region r j during time window t k 
ninteractions i 1, i 2 Number of times user u i 1 interacted with u i 2 
ContactStrength i 1, i 2 Strength of the contact between u i 1 and u i 2 , from 

the perspective of u i 1 
θ Threshold used to determine the list of contacts of 

a user, according to the ContactStrength approach 
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mobility prediction models that we use as baselines, namely Leap

Graph [8] and SMOOTH [9] . Notably, MobHet exploits the pop-

ularity of different regions within the target geographic area, a

feature also used by SMOOTH, as well as the frequency of tran-

sitions across different regions, the main feature used by Leap

Graph. Moreover, previous studies have observed that the contacts

among people may influence their movement patterns [11,14,15] .

That is, a person may be influenced by whom he/she knows is go-

ing to a certain place. In this case, human mobility prediction mod-

els that consider relationships which demonstrate prior knowledge

between users (e.g., friendship) may produce better results than a

model that disregard such information [16] . Motivated by this ob-

servation, some MobHet models may also exploit the (locations of)

contacts of a person to predict his/her location, an aspect that was

neglected by the aforementioned baseline methods. By exploring

different combinations of these three features—popularity of a re-

gion, frequency of transitions between regions, and contacts among

people—we define the proposed MobHet models that aim at pre-

dicting where a person will be located in a given future time. 

A key aspect that distinguishes the MobHet models from prior

work is the type of data source used to support the human mobil-

ity predictions. Unlike the baseline models, MobHet was designed

to use data from heterogeneous sources, both separately and con-

jointly. We here show the use of the MobHet models with mobile

phone data and data collected from a online social network. How-

ever, in principle, any type of data from which the considered fea-

tures can be extracted (or inferred) could be used. 

We evaluate the prediction accuracy of MobHet models, com-

paring them with themselves and with both SMOOTH and Leap

Graph, the two single-source data-driven models from which Mob-

Het was inspired, in various scenarios consisting of: (i) homoge-

neous data from a single source, for different types of data, notably

mobile phone call logs or GPS location data collected from Twitter;

and (ii) the combination of data from both sources. The evaluation

is performed using a large set of different real-world datasets col-

lected in different locations and time periods, involving hundreds

of thousands to millions of users depending on the dataset, with

a number of events (mobile phone calls or posted tweets) in the

same order of magnitude. 

Our experimental results indicate that our best MobHet model,

which exploits all three aforementioned features conjointly, pro-

duces the most accurate predictions, being at least comparable

to or superior than the best baseline, in all evaluated scenarios.

In contrast, the performance of both SMOOTH and Leap Graph

is very dependent on the particular type of data used. SMOOTH

achieves results comparable to our best model using Twitter loca-

tion data, but presents much lower performance in the other sce-

narios, whereas Leap Graph obtains results similar to our best so-

lution for mobile phone data (for which it was designed) and also

when the data from the two sources are combined. Yet, the perfo-

mance of Leap Grap falls behind both SMOOTH and MobHet when

only Twitter location data is used. 

In short, the contributions of this paper are: (i) the proposal of

a family of mobility prediction models that exploit combinations

of features as well as different heterogeneous sources of data; and

(ii) a thorough evaluation of our models, as well as of two base-

line models—SMOOTH and Leap Graph—in different scenarios with

homogeneous and heterogeneous data sources while considering

different time windows for mobility inference. Overall, our evalua-

tion attests the robustness of the proposed MobHet solution to the

use of heterogeneous data in predicting human mobility. 

The remainder of this article is organized as follows.

Section 2 formally states the problem of human mobility predic-

tion we tackle, discusses related work on human mobility models,

and explains the operation of the two models adopted as baselines.

Section 3 introduces our new MobHet models. The data sets used
 p  

Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
n the experiments and the adopted evaluation methodology are

resented in Section 4 . Section 5 discusses our main experimental

esults, while conclusions and possible directions for future work

re presented in Section 6 . 

. Background 

We start this section by first introducing the human mobility

rediction task we aim at addressing in this paper ( Section 2.1 ).

ext, we briefly discuss previous related studies ( Section 2.2 ), delv-

ng further into the presentation of two reference mobility pre-

iction models, namely SMOOTH and Leap Graph, which are used

s baselines in our experimental evaluation ( Section 2.3 ). Table 1

resents the main notation used in this section as well as through-

ut the paper. 

.1. Problem statement 

The prediction task we tackle in this article can be defined as

ollows. Given a target geographic area, defined of a set R of non-

verlapping regions r j ∈ R, a set of users u i ∈ U and a set of time

indows t k ∈ T, we want to build a model to predict where (in which

egion r j ) a given user u i will be at a future time window t k . 

To tackle this prediction problem we assume that a training set

 

training as well as a test set D 

test are given: each such set con-

ists of tuples < u i , r j , t k > , indicating that u i was in region r j dur-

ng time window t k . Moreover, both sets may contain data from

hich we can infer that a relationship demonstrating prior knowl-

dge (e.g., friendship) between users u i and u j ( u i � = u j ) exists. We

efer to such relationship as a contact between u i and u j , and we

efine the set of contacts of user u i as C i . We want to learn the

rediction model, possibly inferring the set of contacts of each user
n mobility using heterogeneous data sources, Computer Commu- 
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 i , using only data in the training set D 

training . We want to evaluate

he learned model using the test data, that is, we want to use the

odel to predict the location (i.e., region) r j for each tuple < u i , ?,

 k > in the test set D 

test . 

Note that the definition of regions r j can be done in several

ays. For example, each region may be defined by a center point

 j , y j (e.g., the coordinates of an antenna in case of mobile phone

ata) and a radius d . Alternatively, each region may be defined by

 squared area with center x j , y j and side d (total area d 2 ). We

ere adopt the latter definition by dividing the total target area

nto non-overlapping squared regions r j , as a grid. 

Also note that, in this article, we discretize the total time in-

erval T in consecutive fixed time windows t k for the purpose of

etermining the movements of each user. In other words, the lo-

ation of a user is predicted considering the granularity of each

indow t k . 

The split of the data into training and test sets can also be per-

ormed in different ways, depending on the data available. Regard-

ess, the split should respect time constraints, i.e., training data

ust precede the test data chronologically (i.e., ∀ < 

∗, ∗, t k 1 >

 D 

training and ∀ < 

∗, ∗, t k 2 > ∈ D 

test , t k 1 < t k 2 ) 
1 . Moreover, consid-

ring that human mobility patterns vary through the day or even

n different days (e.g., weekdays and weekends) [3] , the training

ata should reflect time periods comparable to those covered in

he test set. For example, if we wish to predict the location of

sers between 8AM and 9AM, the training data used to build such

odel should have been collected during that same period in pre-

ious days or in a period short before the target one on the same

ay (so that the assumption of similar mobility patterns still hold).

he definition of the training and test sets in our experiments will

e discussed in Section 4.1 . 

.2. Related work 

The literature is rich in solutions that aim at supporting human

obility prediction. The existing methods exploit different types

f data as well as various strategies to try to predict, as accu-

ately, as possible, the future location of people (i.e., users) [17] .

ome of these models aim at predicting the trajectory of users us-

ng GPS data [18] or mobile phone data [8] . Others make the pre-

ictions using statistical distributions that capture specific patterns

xtracted from the data, such as the distribution of the distances

raveled by a user during a movement [9,10,16,19] . 

Other studies, such as [20] and [21] , explore various patterns

bserved in the data, such as the places visited by people, the fre-

uency of the visits and the regularity of a user mobility patterns.

n [22] , the authors explore the places visited as well as the dis-

ances covered by a user within the same region to predict the

ser location at a future time. In [14] , the authors address the pre-

iction mobility considering a combination of short-ranged paths

nd long distance travels. They find that while the former is pe-

iodic, both spatially and temporally, the latter is more influenced

y the user’s social network ties. 

Similarly, using GPS data collected from georeferenced social

etworking applications, both Davis et al. [23] and Nguyen et al.

24] propose mobility prediction models that exploit not only the

istances traveled and the locations visited by users, but also

he friendship relations between users (extracted directly from

he data). In other words, the models assume that a person will

ave more chance to go to a place where his/her friends often visit.

ome other prior effort s infer such friendship relations from the

ata and use them to study the relationship between friendship
1 The chronological split is motivated by the goal of evaluating the prediction 

odel in a realistic scenario where only historical data, collected at previous time 

eriods, is available to build the prediction model. 

h

O

Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
nd mobility. Alharbi et al. [25] created a model to predict users’

ocial ties from the locations visited by them. The assumption ex-

lored by the authors is that two people who visit the same loca-

ion at the same time interval can be considered friends. Scellato

t al. [13] take a step further and assume that a social bond exists

etween two users if they are located in nearby locations. 

In common, all those previous models of human mobility have

een proposed or evaluated considering a single type of data,

ither data associated with mobile phone calls [2,8,26] or GPS

ata [9,14,19,24,27–29] . Although some prior efforts explored data

rom different sources, they often combine similar data (e.g., check-

ns) from different Web applications (e.g., Twitter and Foursquare)

4,13] . The robustness of these models when configured using dif-

erent type of data, either separately or jointly, is still unknown.

oreover, the recent study by Hess et al. [12] show how the use

f heterogeneous sources may lead to more accurate mobility pre-

ictions or at least to a larger coverage of the population. 

This observation motivated us to design the MobHet models, in-

roduced in Section 3 . MobHet is actually a family of models that

an use multiple data sources to learn mobility patterns and pre-

ict the future location of users. MobHet inherits some of its fea-

ures from two reference models, namely SMOOTH [9] and Leap

raph [8] . Nevertheless, MobHet goes beyond both reference mod-

ls, by also exploiting the relationships (or contacts) among people

o predict mobility, as done by other prior efforts [23,24] . More-

ver, unlike SMOOTH, Leap Graph and the other models that ex-

loit user contacts, MobHet can be configured with different types

f data as input. 

This work greatly extends a preliminary effort of ours to de-

elop human mobility prediction models [30] . In our prior work,

e proposed a single model that exploits only two sets of features,

amely region popularity and the frequency of transitions between

ifferent regions. In this article, we go much further by proposing

 family of models, which differ in terms of the features they ex-

loit: in addition to the two aforementioned features, our models

lso make use of the relationships (contacts) among the users. By

omparing all proposed models, we are able to assess the extent

o which each such feature is important for mobility prediction,

hich has not been analyzed before. Moreover, we evaluate differ-

nt strategies to infer user contacts from the data, as will be fur-

her discussed in Section 3.2 . Finally, we here evaluate our models

uch more thoroughly than in [30] , covering more datasets and

cenarios. 

Before introducing our new MobHet models, we first describe

ow our two baseline models, SMOOTH and Leap Graph, work

ext. 

.3. Baseline models 

This section describes the main components of the two refer-

nce models adopted in this work, SMOOTH [9] and Leap Graph

8] . In our experiments, we used as reference the implementations

f both models made available by the authors 2 . In order to to en-

ble the comparison of the models, we did few code changes, e.g.

n Leap Graph. These changes will be explained in Section 2.3.2 . 

.3.1. SMOOTH 

The SMOOTH model [9] was originally designed to reproduce

atterns of human mobility and not to predict the future location

f a user. However, after analyzing the model source code made

vailable by its authors, we noticed pieces of code (and associated
2 SMOOTH: http://toilers.mines.edu/Public/Code/smooth.html ; Leap Graph: 

ttps://www.cs.utexas.edu/ ∼wdong86/ . We had accessed both source codes on 

ctober 28th, 2015. 

n mobility using heterogeneous data sources, Computer Commu- 

http://toilers.mines.edu/Public/Code/smooth.html
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4 We note however that preliminary experiments with the same region definition 
comments) that enable SMOOTH to predict user locations. There-

fore, for comparison purposes, we considered in this paper this

particular implementation of SMOOTH as available in the original

code. Moreover, the original model captures the movements of a

group of users in a simulated two-dimensional area consisting of

a set of circular regions. Yet, for the sake of a fair comparison, we

used the same region definition based on a grid for all considered

models. That is, we assumed a simulated area which is divided into

a set of non-overlapping squared regions. Each region r j is defined

by the coordinates x j , y j of its center and a side d . 

The main assumption of SMOOTH is that people tend to move

towards popular regions. Thus, each region r j has an associated

probability p j that a user will move towards it. The probability p j 
captures the popularity of the region r j , that is, the expected num-

ber of people visiting r j , and this probability is extracted from the

training set. 

The basic idea of SMOOTH is to simulate the movement of the

users in U in a sequence of steps. Each step corresponds to a time

window t k , using two distributions extracted from the training set:

the distribution of distances traveled by a user during a movement

f dist and the distribution of pause times f pause between successive

movements. 

The simulation works as follows. At each step, for each user

who is not paused (explained below), we first compute the direc-

tion of the movement in relation to the user’s current location and

the probabilities associated with each region r j ∈ R , and then ran-

domly select a distance using f dist . We then simulate the movement

of the user using both the direction and distance selected to de-

termine where (i.e., in which region) the user will be in the next

time window. Then, we randomly pick a pause time using f pause ,

and simulate the user staying in the same location during the se-

lected time. After each step, the probabilities associated with each

region are recomputed. 

Thus, the training of the model is done in two stages. The first

consists of extracting distributions f dist and f pause as well as the ini-

tial set of regions R and their probabilities p i from the training

set D 

training . All regions that have users in D 

training are initially in-

troduced in R with the corresponding probabilities. In the second

stage of the training, the initial positions of the users are deter-

mined from the probabilities associated with the regions, and the

movements of each user are simulated using distributions f dist and

f pause for a number of time windows equal to t max (i.e., the number

of time windows in D 

training ). Note that new regions may be dis-

covered during this phase (i.e., regions in the grid with no user in

the training set). These new regions are inserted into set R, with

their associated probabilities. 

During the test phase, the movements of the users in set D 

test 

are simulated using the model learned during training, keeping the

set R fixed and considering the starting location of each user given

by the user’s first appearance in D 

test . The regions visited by users

during the simulation are compared with the data available in D 

test 

to assess the accuracy of the predictions. 

2.3.2. Leap Graph 

In [8] , the authors investigated how to use mobile phone data

to predict the mobility of users and proposed a new mobility pre-

diction model named Leap Graph. They assumed as input a log of

phone calls, each one characterized by the following information:

unique user identifier, the time instants of the beginning and end

of the call, the coordinates (latitude and longitude) of the antennas

where the call started and ended, and the identifiers of the sectors

used in those antennas 3 . 
3 Each antenna is divided into 3 sectors of 120 o , each one responsible for about 

one third of the antenna coverage area. 

c

t

Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
In its original implementation, Leap Graph assumes that each

egion r j ∈ R is associated with an antenna, being defined by the

ntenna’s coordinates and a radius d corresponding to the an-

enna’s coverage area. However, for the sake of a fair comparison,

e here assume the same region definition for all models, based

n a grid, as defined in the previous section 

4 . Thus, calls are asso-

iated with the regions where the used antennas are located. That

s, a call from user u i associated with an antenna located within

egion r j at time t is interpreted as an evidence of the presence of

 i in that region during the time window t k that includes t . The

odel attempts to infer the movement of each user from a graph

hat captures the trajectories of users across the regions of R . 

The training phase consists primarily in creating a graph of tra-

ectories for each user using the data in D 

training . In graph g i cre-

ted for user u i , each vertex corresponds to a region. An edge be-

ween r j 1 and r j 2 is added when: (i) u i made a call that started

n r j 1 and terminated in r j 2 ; or when (ii) u i made two consecutive

alls, the first one in r j 1 and the second in r j 2 . 

As originally proposed, Leap Graph aims to predict the next re-

ion where a user will be located given its current location. There-

ore, it does not consider the time dimension and only explores the

ransitions between regions made by each user. To make it com-

arable to SMOOTH and to our proposed MobHet models (which

onsider user movements over time) and to apply it to our target

rediction task, we added self-loops to each vertex to capture the

taying of a user in the same region in successive time windows.

e also assigned weights w j 1, j 2 to each edge ( r j 1 , r j 2 ), including

elf-loops, to capture the probability of a user moving towards the

estination region r j 2 (or staying in the same region, in case of a

elf-loop) in the next time window. 

To compute such weights we make two key assumptions: (1)

he time interval between two successive calls from the same user

s equally divided between the two regions where the calls took

lace 5 , and (2) a transition between two regions occur in a single

ime window. Specifically, suppose that user u i made two consec-

tive calls, one during time window t k 1 while located in region

 j 1 , and the next one during time window t k 2 while in region r j 2 .

rom this data, we are not able to infer how long u i remained in r j 1 
which is important to compute the weight of the self-loop associ-

ted with r j 1 ) before moving to r j 2 nor how long such movement

ook. Thus, we assume that: (1) the user remained half of the time

nterval between t k 1 and t k 2 in r j 1 and the other half in r j 2 , and (2)

he transition between the two regions happened during one time

indow. This is obviously an approximation, but it was a design

hoice based on the available data. 

Given such assumptions, we first compute the weight of each

dge (including self-loops), w j 1, j 2 , as the total number of times the

ser performed the corresponding transition. In the case of self-

oops, the weight corresponds to the total number of time win-

ows during which the user remained in the corresponding region.

utting in other words, the weight of a self-loop is equal to the

umber of times a transition to the same region was performed,

ssuming transitions occur during one window. Let us consider the

ame example of a user who made two calls, one during t k 1 while

n r j 1 and the next one in t k 2 while in r j 2 . In this case, we would

ssign the weights of the two self-loops as w j 1, j 1 = w j 2, j 2 = 

t k 2 −t k 1 
2 ,

nd the weight of the edge between r j 1 and r j 2 as w j 1 , j 2 = 1 . This

omputation is performed for each edge of each graph g i . Note

hat, given such design choice, we are not able to capture trips
as in the original papers of both SMOOTH and Leap Graph (i.e., circular regions) 

led to similar conclusions in terms of the relative performance of all models in all 

onsidered scenarios as those reported in this article. 
5 For calls that started and ended in different regions, we assume that the dura- 

ion of the call is equally divided between the two regions. 

n mobility using heterogeneous data sources, Computer Commu- 
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tarting and ending within the same time window. That is, we cap-

ure time differences at the granularity of time windows. 

As proposed in [8] , the individual graphs created are then com-

ined into a single weighted graph G which captures the move-

ents of the population of users in D 

training . To that end, the user

raphs g i are sorted in an order given by the time of the first call

f each user in D 

training and then processed as follows. The edges

f all graphs are combined into G . Each edge weight is recomputed

o represent the average over all individual graphs. Moreover, at

he end of the training phase, the weights of all edges leaving the

ame vertex (including self-loops) are normalized to add up to 1,

o as to represent probabilities of a user performing the transition

or remaining in the same region, in case of self loops) in one time

indow. 

One particular issue regarding the combination of individual

raphs in G deserves further explanation. Dong et al. [8] consider

hat users who visit the same sequence of regions tend to con-

inue following the same route. That is, if two graphs capturing

he trajectories of two users have one or more paths covering the

ame edges, with at least n (an input parameter) edges in com-

on, the two trajectories are considered “similar”, and the edges

f the second graph following the common path are disregarded.

s an example, suppose that graph g 1 contains the trajectory { r 1 ,

 2 , r 3 , r 4 } and graph g 2 contains the trajectory { r 1 , r 2 , r 3 , r 5 }, and

uppose parameter n is set to 2. Given that trajectory { r 1 , r 2 , r 3 },

ith n = 2 edges, appears in both graphs, the edges present in

 2 following the common path (i.e, ( r 3 , r 5 )) would be disregarded.

raph G would contain the edges that build trajectory { r 1 , r 2 , r 3 ,

 4 }. The weights of edges ( r 1 , r 2 ) and ( r 2 , r 3 ) would be equal to 2

prior to normalization), and the weight of ( r 3 , r 4 ) would be set

o 1. Thus, parameter n specifies a minimum number of edges in

ommon that two graphs should have to be considered “similar”

rajectories and to cause edges of the second graph to be disre-

arded. According to the authors, this measure is taken to avoid

ouble counting the same trajectory, since they only consider the

ath and not the volume of users who traverse between regions. 

During the test phase, Leap Graph simulates the movement of

sers using graph G . The initial location of each user is defined

rom the user’s first call in D 

test . This corresponds to a vertex in

raph G . We use the edge weights as probabilities to simulate the

ovements of each user and infer his/her location in successive

ime windows. In our experiments, we set the number n of edges

qual to 2, as this produced the best results in [8] . 

. The new MobHet models 

In this section, we introduce a new family of data-driven hu-

an mobility prediction models, named MobHet. Unlike prior

odels, MobHet exploits a combination of the following features:

opularity of regions, the frequency of transitions among regions,

nd the contacts of each user. In the following, we first explain

ow MobHet works ( Section 3.1 ), and then we discuss different

trategies applied to define the contacts of a user ( Section 3.2 ). 

.1. MobHet operation 

The MobHet model 6 exploits heterogeneous data sources, either

ointly or individually, to capture the movement of users among

egions r j in R . Once again, we assume the total area simulated is

ivided into squared regions r j (with center x j , y j and a side d ) as

 grid. 
6 Details about the implementation of MobHet, including source code, as well 

s our implementation of the (modified) Leap Graph, can be found in http:// 

omepages.dcc.ufmg.br/ ∼lucasmsil/Mobhet.html . 

o

u

Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
MobHet inherits some aspects of the two baseline models. As

one in SMOOTH, we associate a popularity measure with each

egion r j . Similarly to Leap Graph (and unlike SMOOTH), MobHet

imulates the movement of users between regions with a region

ransition graph G , with self-loops representing the permanency of

 user in the same region in successive time windows. However,

nlike Leap Graph, the creation of graph G does not start with the

raphs of individual trajectories for each user, but rather considers

ll regions visited by all users jointly. The weight of an edge (in-

luding self-loop) is computed by exploiting a combination of the

hree features, region popularity, frequency of transition between

egions, and user contacts, as discussed below. 

In MobHet, the popularity of a region r j , p j , is given by the num-

er of users who visited r j in the training set D 

training (may be 0),

hile the frequency of transition between regions r j 1 and r j 2 , de-

oted by h j 1, j 2 , is given by the average number of times the transi-

ion was performed in consecutive time windows by the same user

also in D 

training ). Note that, like in Leap Graph, the weight of a

elf-loop captures the average number of time windows a user re-

ains in the same region, as this is interpreted as successive tran-

itions from/to the same region. Moreover, just like in Leap Graph,

e assume that the time between successive pieces of evidence of

he user location (e.g., successive calls, successive tweets) is equally

ivided between the two associated regions, and that the move-

ent between the two regions occurs in a single time window. 

Motivated by previous observations that a user’s social links

ay influence her/his movements [13,16] , we also exploit the con-

acts among users in the design of MobHet. A contact between two

sers can be defined as any interaction held between them that in-

icates some prior relationship. This is a very broad notion, which

an be instantiated in different ways, depending on the data avail-

ble from which such contacts will be extracted. We discuss the

dopted strategies to define the contacts of a user in Section 3.2 . 

Given the lists of contacts of each user, we define the probabil-

ty P (L i, j,k | C ≥m 

i, j,k 
) of finding user u i in region r j in time window t k 

event L i, j, k ), giv en that at least m contacts of user u i are located

n the same region in the same time window (event C ≥m 

i, j,k 
). That is 

 (L i, j,k | C ≥m 

i, j,k 
) = 

P (L i, j,k ∧ C ≥m 

i, j,k 
) 

P (C ≥m 

i, j,k 
) 

, 

As the other two features, namely region popularity ( p j ) and

requency of transition between regions ( h j 1, j 2 ), the probabilities

 (L i, j,k | C ≥m 

i, j,k 
) are computed using the training set D 

training . 

In its present form, MobHet builds a single graph that captures

n aggregated behavior of the whole user population 

7 . For exam-

le, when exploiting user contacts to build such graph (as dis-

ussed below), we take the mean probability P (L i, j,k | C ≥m 

i, j,k 
) across

ll users. Similarly, region popularity and frequency of transitions

apture the interests for particular regions and movements across

egions of the whole user population. We chose to do so for the

ake of simplicity and to have a first-cut estimate of the benefits

f capturing (a subset of) the three aforementioned features for

obility prediction, even in an aggregated way. However, we note

hat MobHet could be extended to employ other strategies. For

nstance, we could compute the considered features across clus-

ers of users with similar mobility patterns (learned from historical

ata), thus building different graphs, one of each cluster. This ap-

roaches would be more costly, but could potentially lead to bet-

er results. We leave those extensions and a thorough evaluation

f their benefits for future work. 
7 Note that both SMOOTH and Leap Graph also capture aggregated behavior of all 

sers. 

n mobility using heterogeneous data sources, Computer Commu- 
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Given the three sets of features, we define a family of predic-

tive models, called MobHet. Specifically, we define the following

variations of MobHet: 

1. Transition and popularity (MobHet-TP) : exploits only the fre-

quency of transitions between regions and the popularity of

each region. In this case, the weight of edge ( r j 1 , r j 2 ) is defined

w j 1 , j 2 = h j 1 , j 2 × p j2 for any edge (i.e., j 1 � = j 2 or j 1 = j 2 ). That

is, in this case, the probability P (L i, j2 ,k | C ≥m 

i, j2 ,k 
) is disregarded; 

2. Transition and contacts (MobHet-TC) : exploits only the frequency

of transitions between regions and the contacts of each user.

In this case, the weight of edge ( r j 1 , r j 2 ) is w j 1 , j 2 = h j 1 , j 2 ×
P (L i, j2 ,k | C ≥m 

i, j2 ,k 
) for any edge (i.e., j 1 � = j 2 or j1 = j2 ); 

3. Popularity and contacts (MobHet-PC) : the weight of edge ( r j 1 ,

r j 2 ) is w j 1 , j 2 = p j2 × P (L i, j2 ,k | C ≥m 

i, j2 ,k 
) for any edge (i.e., j 1 � = j 2 or

j1 = j2 ); 

4. Only contacts (MobHet-C) : the weight of edge ( r j 1 , r j 2 ) is w j 1 , j 2 =
P (L i, j2 ,k | C ≥m 

i, j2 ,k 
) for any edge (i.e., , j 1 � = j 2 or j1 = j2 ); 

5. Transition, popularity, and contacts (MobHet-TPC) : exploits all

three features jointly. In this case, the weight of edge ( r j 1 , r j 2 ) is

given by w j 1 , j 2 = h j 1 , j 2 × p j2 × P (L i, j2 ,k | C ≥m 

i, j2 ,k 
) for any edge (i.e.,

j 1 � = j 2 or j1 = j2 ). 

In all cases, the weights are normalized to represent transition

probabilities (i.e., the sum of the weights of all edges leaving a ver-

tex must add up to 1). 

MobHet thus differs from both Leap Graph, which considers

only the transitions between regions, and from SMOOTH, which

exploits only the popularity of each region. Our family of mobil-

ity models considers that both aspects as well as the contacts of

a user may influence the trajectory of the user: (i) on one hand,

users tend to visit specific locations depending on his/her current

location (as shown in [8] ); (ii) on the other hand, the popularity of

a region [9,29] , as well as the location of the contacts of the user

[24] may also influence where the user goes next. By comparing

the aforementioned five variations of MobHet against themselves

as well as with both SMOOTH and Leap Graph, we are able to as-

sess the extent to which each of the three features is important

to improve prediction accuracy, either in isolation (e.g., MobHet-C,

SMOOTH) or combined (e.g., MobHet-TPC, MobHet-TP). We discuss

the results of this evaluation in Section 5 . 

The training phase of each MobHet model consists in learn-

ing from the training set the values of the three used features

and build the transition graph G . We illustrate this process for the

MobHet-TP model in Fig. 1 . In Fig. 1 (a), the vertices are labeled

with the region popularity values (e.g., p 2 = 5 for r 2 ) and the edges

are labeled with the frequency of transitions (e.g., h 1 , 2 = 4 for edge

( r 1 , r 2 )). The edge weights ( w j 1, j 2 ) are first computed as the prod-

uct of both measures ( Fig. 1 (b)) and then normalized ( Fig. 1 (c)).

Note that, like Leap Graph, we are not able to capture trips start-

ing and ending within the same time window. 

The test phase consists of simulating graph G , as done for Leap

Graph. One final issue refers to the use of the MobHet models

that exploit user contacts (i.e., MobHet-C, MobHet-PC, MobHet-TC,

and MobHet-TPC) in cases where we cannot infer the location of

enough contacts of the user. In that case, we revert to the corre-

sponding MobHet variation without contacts. For example, suppose

we are using MobHet-TPC to make predictions. If a prediction is

to be made for a user u i who does not have at least m contacts

in D 

test , we then choose to use MobHet-TP instead. Similarly, we

use MobHet-P (MobHet-T) for users with not enough contacts, in-

stead of MobHet-PC (MobHet-TC). Therefore, during test phase, we

keep always a pair of transition graphs, switching between them

depending on whether the target user has enough contacts or not.

If MobHet-C is the model in use, only predictions for users with at

least m contacts in D 

test can be made. 
Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
.2. User contacts 

Having described the general operation of MobHet, we now ex-

mine how to define a contact of a user. As mentioned above, a

ontact between two users can be defined as any interaction be-

ween them that can serve as evidence that such users know each

ther (virtually or in the real world). For example, a phone call in-

olving two users can be used as evidence that these users know

ach other, thus implying that they are contacts of each other. Sim-

larly, a social link between two users in a Web application, such

s a follower-followee connection on Twitter, can also be used to

efine the contacts between users. 

We here evaluate two strategies to define the contacts of a user.

he first one, which has already been addressed in the literature

13,21,22,28] , uses the friendship ties present in online social net-

orks, being suitable to be used when data from such applications

s available. Specifically, we here use the follower-followee links

n Twitter. That is, if user u 1 follows and is followed by user u 2 ,

hey are considered contacts of each other. We refer to this strat-

gy as Follower-Followed . 

The second strategy, referred to as ContactStrength , explores

he frequency of interactions between two users, and can be ap-

lied to data collected from both social networks (Twitter, in the

resent case) and mobile phone calls. Specifically, we consider as

n interaction either a phone call or a retweet, and define the

trength of the contact between a pair of users u 1 and u 2 as fol-

ows. Let ninteractions i 1, i 2 be the number of times user u i 1 inter-

cted with u i 2 , either by posting a retweet or by making/receiving a

all from/to u i 2 . Note that ninteractions i 1, i 2 captures the total num-

er of interactions between the two users, regardless of who ini-

iated the call or posted the retweet. The strength of the contact

etween u i 1 and u i 2 from the perspective of u i 1 is defined as the

raction of all interactions of u i 1 which happened with u i 2 . That

s 

ontactStrength i 1 ,i 2 = 

ninteractions i 1 ,i 2 
∑ | U| 

i 3=1 ,i 3 � = i 1 ninteractions i 1 ,i 3 
, 

We consider that u i 2 is a contact of u i 1 if ContactStrength i 1, i 2 

s equal to or greater than a given threshold θ . In Section 5 , we

resent an evaluation of the impact of the choice of θ for predic-

ion accuracy. 

Note that, unlike in the Follower-Followed strategy, the contact

inks in the ContactStrength approach are not necessarily bidirec-

ional. That is, u i 2 may be considered a contact of u i 1 even if u i 1 is

ot a contact of u i 2 . 

. Experimental setup 

In this section, we present the datasets ( Section 4.1 ) as well as

he methodology ( Section 4.2 ) used in our experimental evaluation

f the human mobility prediction models. 

.1. Datasets 

In our evaluation, we use three different datasets obtained from

ultiple sources. The first dataset consists of data related to mo-

ile phone calls collected in different major cities in Brazil during

ifferent periods of time. This dataset, referred to as MobilePhone-

R, is further described in Section 4.1.1 . The second dataset, re-

erred to as Twitter-BR and detailed in Section 4.1.2 , consists of

eoreferenced tweets collected at the same locations and during

he same periods as the MobilePhone-BR dataset. Finally, our third

ataset consists of mobile phone calls collected in Mexico dur-

ng a one-month period. This dataset, described in Section 4.1.3 ,

s referred to as MobilePhone-MX. At the end of this section, we
n mobility using heterogeneous data sources, Computer Commu- 
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Fig. 1. Determining transition probabilities for MobHet-TP: an illustrative example. 

Fig. 2. Locations of the Antennas in Belo Horizonte city (MobilePhone-BR dataset). 
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iscuss some filtering applied to the data and provide an overview

f all datasets ( Section 4.1.4 ). 

.1.1. MobilePhone-BR dataset 

Our first dataset, provided by a large Brazilian mobile phone

perator, is composed of information about mobile phone calls

ade during pre-specified time periods in five major cities in

razil, namely Belo Horizonte (BH), Fortaleza, Recife, Rio de Janeiro

RJ), and São Paulo (SP). 
Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
The data contains the following information for each call: 

• Call id : unique identifier of the call; 
• User id : unique identifier of the user who made the call

(anonymized); 
• Start time : start time of the call; 
• End time : end time of the call; 
• Initial antenna : geographic coordinates ( i.e., latitude and longi-

tude) of the antenna where the call was initiated; 
n mobility using heterogeneous data sources, Computer Commu- 
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Fig. 3. Locations of the antennas in Mexico (MobilePhone-MX dataset). 
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• End antenna : geographic coordinates ( i.e., latitude and longi-

tude) of the antenna where the call was finished. 

For illustration purposes, Fig. 2 shows the locations of the an-

tennas in the city of Belo Horizonte 8 . An overview of the amount

of data available for each city is given in Section 4.1.4 . 

4.1.2. Twitter-BR dataset 

The Twitter data consists of georeferenced tweets, i.e., tweets

with geographic coordinates, collected using the Twitter Stream

API . This API allows real-time gathering of tweets with location fil-

tering, thus enabling the restriction of the collection area to a par-

ticular region. The collection of the Twitter dataset was planned

following the same locations and time periods on which the

MobilePhone-BR was gathered. Such locations and periods were

agreed upon with the mobile phone operator beforehand, prior to

the effective data gathering. Each registered tweet contains the fol-

lowing information: 

• Tweet id : unique identifier of the tweet; 
• User id : unique identifier of the user who posted the tweet

(anonymized); 
• Latitude : latitudinal geographic coordinate from where the user

posted the tweet; 
• Longitude : longitudinal geographic coordinate from where the

user posted the tweet; 
• Time : timestamp of when the user posted the tweet; 
• Retweets : list of users (identified by their user ids) who posted

retweets of this tweet. 

Besides that, for each user u i , we also collected 

• Followers : list of users (identified by their user ids) that

follow u i ; 
• Followed : list of users (identified by their user ids) followed

by u . 
i 

8 The map was taken from the site Telebrasil: http://www.telebrasil.org.br/ 

panorama- do- setor/mapa- de- erbs- antenas . 

t  

Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
Note that both the MobilePhone-BR and the Twitter-BR datasets

ave been collected independently . Therefore, it is not possible to

dentify the same user on these different data sources. In this way,

e consider both sets of users disjoint. 

.1.3. MobilePhone-MX dataset 

In addition to the MobilePhone-BR and Twitter-BR datasets col-

ected in Brazil (see Section 4.1.1 and 4.1.2 , respectively), we also

valuated our prediction models using a mobile phone dataset

rovided by Grandata 9 . This dataset consists of information about

hone calls made in 22,304 antennas spread over Mexico ( Fig. 3 )

uring a one-month period (March 1st to 31st, 2014). The data is

nonymized and contains the following information for each call: 

• Call id : unique identifier of the call; 
• User id : unique identifier of the user who made the call

(anonymized); 
• Destination id : unique identifier of the user who received the

call (anonymized); 
• Start time : start time of the call; 
• End time : end time of the call; 
• Initial antenna : geographic coordinates ( i.e., latitude and longi-

tude) of the antenna where the call was initiated; 
• End antenna : geographic coordinates ( i.e., latitude and longi-

tude) of the antenna where the call was finished. 

The single difference between the structure of the

obilePhone-BR ( Section 4.1.1 ) and the MobilePhone-MX datasets

s that in the latter the anonymized user id to whom the call was

estined is also known. 

.1.4. Filtering and resulting dataset sizes 

We applied a filtering to all three datasets to remove users

ho made only one call or posted only one tweet, since we could

ot infer any mobility of such users from a single event (tweet

r call). Table 2 summarizes the resulting datasets collected in

razil (MobilePhone-BR and Twitter-BR) after the application of

his filtering. Each row shows the location (city) and the collection
9 http://www.grandata.com . 

n mobility using heterogeneous data sources, Computer Commu- 
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Table 2 

Individual collections that compose MobilePhone-BR and Twitter-BR datasets. 

Brazilian city Date Time Calls Tweets 

MM/DD/YYYY interval #Calls #Users #Tweets #Users 

Belo Horizonte (BH) 10/21/2011 13 h–21 h 31 .705 12 .237 32 .334 11 .231 

Belo Horizonte (BH) 12/31/2011 20 h–04 h 201 .212 100 .021 210 .001 105 .0 0 0 

Belo Horizonte (BH) 01/03/2012 20 h–04 h 12 .145 5 .246 40 .234 17 .342 

Belo Horizonte (BH) 02/03/2013 13 h–20 h 69 .227 30 .033 30 .765 10 .338 

Belo Horizonte (BH) 03/10/2013 13 h–20 h 15 .794 7 .585 27 .340 12 .845 

Belo Horizonte (BH) 03/02/2013 12 h–19 h 15 .630 9 .354 14 .332 4 .870 

Belo Horizonte (BH) 06/22/2013 13 h–21 h 4 .050 1 .998 30 .103 12 .540 

Belo Horizonte (BH) 06/26/2013 13 h–21 h 6 .264 2 .987 29 .934 11 .532 

Belo Horizonte (BH) 09/11/2013 17 h–23 h 14 .023 4 .532 15 .635 5 .103 

Fortaleza 06/29/2014 14 h–21 h 7 .185 2 .372 13 .453 4 .236 

Recife 12/31/2011 20 h–04 h 21 .123 10 .0 0 0 45 .321 20 .192 

Recife 01/03/2012 20 h–04 h 8 .769 4 .390 7 .839 2 .987 

Recife 06/29/2014 14 h–21 h 13 .335 4 .923 13 .577 3 .981 

Rio de Janeiro (RJ) 08/28/2011 14 h–20 h 67 .627 28 .027 38 .091 13 .227 

Rio de Janeiro (RJ) 10/30/2011 14 h–20 h 58 .610 25 .593 37 .931 12 .498 

Rio de Janeiro (RJ) 12/04/2011 14 h–20 h 77 .869 30 .597 39 .239 12 .945 

Rio de Janeiro (RJ) 12/11/2011 14 h–20 h 56 .159 23 .563 40 .123 13 .002 

Rio de Janeiro (RJ) 12/31/2011 20 h–04 h 36 .354 13 .918 21 .021 3 .211 

Rio de Janeiro (RJ) 01/03/2012 20 h–04 h 20 .231 9 .134 45 .322 19 .443 

Rio de Janeiro (RJ) 03/29/2012 18 h–22 h 31 .166 12 .305 45 .030 15 .302 

Rio de Janeiro (RJ) 07/08/2012 14 h–20 h 7 .579 3 .384 30 .213 13 .490 

Rio de Janeiro (RJ) 11/27/2013 18 h–00 h 17 .009 6 .192 32 .940 13 .834 

Rio de Janeiro (RJ) 06/29/2014 14 h–21 h 5 .120 1 .132 14 .033 3 .643 

Rio de Janeiro (RJ) 07/13/2014 14 h–21 h 5 .340 1 .038 15 .860 4 .572 

São Paulo (SP) 02/04/2012 15 h–22 h 3 .370 1 .159 25 .370 11 .930 

São Paulo (SP) 11/25/2012 12 h–18 h 22 .752 11 .235 28 .042 13 .220 

São Paulo (SP) 03/24/2013 13 h–20 h 44 .499 20 .787 50 .323 20 .334 

Total 874 .147 383 .742 974 .406 392 .848 

Fig. 4. Amount of calls/tweets per hour–Rio de Janeiro 06/29/14. 
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Fig. 5. Separation of data into training and test sets (different days). 
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eriod, the number of calls and tweets as well as the respective

umbers of users in each dataset. In total, the datasets collected

n Brazil cover five major cities, 27 days, 874,147 calls made by

83,742 users, and 974,406 tweets posted by 392,848 users. The

ltered dataset from Mexico (MobilePhone-MX), in turn, consists

f a total of 9882,477 calls made by 3541,580 users throughout the

onth of March, 2014. 

.2. Evaluation methodology 

Before discussing our evaluation methodology, we argue that,

s one might expect, the volume of data (i.e., number of calls or

weets) varies greatly over the day. This is illustrated in Fig. 4 for

ne particular city (Rio de Janeiro) and period (June 29th, 2014) in

he MobilePhone-BR dataset. Thus, we decided to develop a predic-

ive model for every hour in order to more accurately capture the

nderlying mobility patterns in different periods during the day. To

hat end, we first divided each dataset into one-hour intervals. 
Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
Next, we divided each dataset into training ( D 

training ) and test

 D 

test ) sets. As argued in Section 2.1 , such division should be made

rovided that the following assumption holds: the training set,

here the prediction model is learned, covers time periods during

hich the mobility patterns are similar to those present in the test

et, where the model is applied. The first approach is to use data

rom multiple days (same day of the week but different weeks)

overing the same period of time. In that case, we could use the

ata in one day for training, and the data in the same weekday,

ne week later, for testing the model as illustrated in Fig. 5 . For

his strategy we use the following datasets (MM/DD/YYYY is the

ate format): 

• Belo Horizonte 12/31/2011 and Belo Horizonte 01/03/2012; 
• Belo Horizonte 02/03/2013 and Belo Horizonte 03/10/2013; 
• Recife 12/31/2011 and Recife 01/03/2012; 
• Rio de Janeiro 08/28/2011 and Rio de Janeiro 10/30/2011; 
• Rio de Janeiro 12/04/2011 and Rio de Janeiro 12/11/2011; 
• Rio de Janeiro 12/31/2011 and Rio de Janeiro 01/03/2012; 
• Rio de Janeiro 06/29/2014 and Rio de Janeiro 07/13/2014; 
n mobility using heterogeneous data sources, Computer Commu- 

http://dx.doi.org/10.1016/j.comcom.2016.04.013
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Fig. 6. Separation of data into training and test sets (same day). 
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10 Each model was replicated 50 times for all experiments present in the 

Section 5 . 
• Mexico 16 to 22 of March of 2014 and Mexico 23 to 29 of

March of 2014. 

However, some collections in our Brazilian dataset do not cover

multiple days. Thus, we opted for a different strategy applying it to

all datasets. For each day, we further divided each one-hour inter-

val into two 30-minute periods: the former was used for training,

and the latter for testing, as illustrated in Fig. 6 . 

An important aspect of the evaluation is the definition of the

time window and time period. The time window captures the mo-

bility of users during the time period used in the datasets to train

and test the models. The time period, in contrast, is used to break

the timeline into intervals during which (we believe) human mo-

bility will be roughly stable. Since the time period of the collec-

tions are 30 min (for training and test at the same day) and 60

min (for training and test in different days), we decide to use time

windows of 5 and 10 min. Thus, we observe at least three steps for

periods of 30 min and six steps for the period of 60 min. Further,

we use a null model in which user u i located in a region r j at time

t k remains in the same region at time t k +1 . 

For each of the datasets collected in Brazil, we evaluated each

mobility prediction model in scenarios that are based on only mo-

bile phone calls, only tweets, and on both mobile phone calls and

tweets simultaneously. The purpose of the latter scenario is to

evaluate the performance of the models when configured to use

heterogeneous data sources together. The best approach to com-

bine data from heterogeneous sources is not obvious because dif-

ferent models may have different relative performances depending

on the input data. Thus, we consider and evaluate two strategies

to combine mobile phone calls and tweets: 

• Association of tweets to mobile phone calls: each tweet is asso-

ciated with the nearest cell antenna to the tweet geolocation; 
• Association of mobile phone calls to tweets: each antenna in

the mobile phone call dataset is considered a point (as is each

tweet) in the simulation region. 

Note that in both cases, we are not able to infer user contacts

from the combined data as this information is not available on

the mobile phone calls. Thus, when using heterogeneous data, we

only evaluate the MobHet variation that does not exploit contacts

(MobHet-TP). 

As explained in Section 2.1, 2.3 and 3.1 , we used the same def-

inition for regions for the sake of comparability. Additionally, we

defined the simulated area of the Brazilian datasets as the geo-

graphic region of the city where each dataset was collected. For the

Mexican dataset, we used the geographic area of the country as in-

put to simulation. In all cases, we consider the distance d defining

each region as equivalent to 500 m, which is the typical coverage

radius of an antenna. This value was chosen so that the results of

the various scenarios are comparable. 

Finally, we evaluated the prediction accuracy for all models, that

is defined as the fraction of tuples < u i , r j , t k > in the test set D 

test 
Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
or which the prediction was correct. The only reason for having

he training data to precede the test data chronologically is that we

ant to simulate a realistic scenario where, at prediction time, we

nly have historical data collected over previous periods of time. 

. Experimental results 

In this section, we turn to evaluate the new MobHet mod-

ls, comparing them with themselves and with the two baselines,

MOOTH and Leap Graph. We start by comparing all MobHet vari-

tions, introduced in Section 3.1 , with each other ( Section 5.1 ).

ext, we analyze different scenarios for our model ( Section 5.2 ).

inally, we compare our best MobHet models with the two base-

ines ( Section 5.3 ). 

.1. Accuracy of the MobHet models 

The five variations of MobHet model differ in terms of the three

asic features—region popularity, frequency of transitions between

egions, and user contacts—used to compute the weights of the

dges of the region transition graph G . In this section, we focus

n comparing these five variations, namely, MobHet-C, MobHet-TP,

obHet-TC, MobHet-PC, and MobHet-TPC, verifying their respec-

ive prediction accuracy. Here, we evaluate the models using only

he datasets Twitter-BR and MobilePhone-MX because as afore-

entioned we cannot infer user contacts from the MobilePhone-BR

ataset. We use this latter dataset for comparing our best model

ith the baselines. 

For the Twitter-BR dataset, we apply two strategies to identify

ser contacts, namely Follower-Followed and ContactStrength (de-

cribed in Section 3.2 ), while for the MobilePhone-MX dataset we

nly use the ContactStrength strategy. For both datasets, we eval-

ate all models that use contacts the following values of θ (the

ontactStrength threshold): 10%, 15%, 20%, 25%, 50%, and 75%. For

hese models, we initially fix the value of m , the minimum number

f contacts considered, at 1, deferring the evaluation of the impact

f this parameter to the end of this section. 

Table 3 shows the average prediction accuracy (along with 95%

onfidence intervals) of each of the five proposed MobHet models

nd various contact definition strategies 10 . The table shows results

or one single city and time period of the Twitter-BR dataset (Rio

e Janeiro, 06/29/2014 with time window of 5 min and training

nd test at the same day). We omitted the results for other peri-

ds/cities because they are very similar. Best results (and statistical

ies) for each dataset and model are shown in bold, whereas the

verall best result for each dataset is marked with a “∗”. 

Overall, the best results are produced by MobHet-TPC. This

hows the importance of considering all three features jointly to

redict human mobility. The worst approach is the one that uses

nly contacts: MobHet-C produces results that are as much as

8% (Twitter-BR) and 24% (MobilePhone-MX) worse than MobHet-

PC, besides not being applicable to users with no contacts in

he dataset. Next, using both contacts and frequency of transitions

etween regions (MobHet-TC) or region popularity (MobHet-PC)

reatly improves over using only the former. Yet, both approaches

re still worse than MobHet-TPC. Finally, it is interesting to note

hat using both region popularity and frequency of transitions

MobHet-TP) improves over using only contacts (up to 59% and

2% for Twitter-BR and MobilePhone-MX datasets, respectively).

et, this approach is still much worse than MobHet-TC, MobHet-

C and MobHet-TPC, which indicates the importance of taking the

ser contacts into account when predicting mobility, consistently
n mobility using heterogeneous data sources, Computer Commu- 

http://dx.doi.org/10.1016/j.comcom.2016.04.013


L.M. Silveira et al. / Computer Communications 0 0 0 (2016) 1–15 11 

ARTICLE IN PRESS 

JID: COMCOM [m5G; May 3, 2016;14:39 ] 

Table 3 

Average precision (along with 95% confidence intervals) of all MobHet models ( m = 1 ). Best results (and statistical ties) for 

each method are shown in bold. Overall best results are marked with “∗”. 

Twitter-BR Dataset (Rio de Janeiro, 06/29/2014) 

Contact definition MobHet-C MobHet-TC MobHet-PC MobHet-TPC MobHet-TP 

Follower-Followed 0 .342 ± 0.0194 0 .505 ± 0.0135 0 .513 ± 0.0176 0 .559 ± 0.0185 

θ = 10% 0 .365 ± 0.0175 0 .540 ± 0.0142 0 .567 ± 0.0182 0 .625 ± 0.0195 

θ = 15% 0 .373 ± 0.0170 0 .560 ± 0.0147 0 .594 ± 0.0180 0 .640 ± 0.0190 

Contact θ = 20% 0 .383 ± 0.0195 0 .595 ± 0.0151 0 .632 ± 0.0174 0 .654 ± 0.0184 

Strength θ = 25% 0 .409 ± 0.0149 0 .620 ± 0.0169 0 .653 ± 0.0177 0 .678 ± 0.0193 ∗

θ = 50% 0 .420 ± 0.0159 0 .630 ± 0.0173 0 .653 ± 0.0162 0 .684 ± 0.0197 ∗

θ = 75% 0 .394 ± 0.0184 0 .612 ± 0.0163 0 .621 ± 0.0149 0 .631 ± 0.0192 

None 0 .545 ± 0.0211 

MobilePhone-MX Dataset 

Contact definition MobHet-C MobHet-TC MobHet-PC MobHet-TPC MobHet-TP 

θ = 10% 0 .493 ± 0.0232 0 .593 ± 0.0191 0 .613 ± 0.0193 0 .630 ± 0.0201 

θ = 15% 0 .509 ± 0.0222 0 .602 ± 0.0195 0 .626 ± 0.0182 0 .649 ± 0.0213 

Contact θ = 20% 0 .524 ± 0.0214 0 .623 ± 0.0180 0 .642 ± 0.0190 0 .668 ± 0.0210 

Strength θ = 25% 0 .544 ± 0.0230 0 .641 ± 0.0198 0 .663 ± 0.0198 0 .692 ± 0.0172 ∗

θ = 50% 0 .532 ± 0.0218 0 .638 ± 0.0208 0 .652 ± 0.0203 0 .683 ± 0.0168 ∗

θ = 75% 0 .468 ± 0.0212 0 .575 ± 0.0212 0 .583 ± 0.0215 0 .618 ± 0.0178 

None 0 .619 ± 0.0153 

Table 4 

Number of users in D training as we vary parameter θ of ContactStrength 

approach. 

DataSet 

ContactStrength Twitter-BR MobilePhone-MX 

(Rio de Janeiro on 06/29/2014) 

θ = 10% 692 1332 ,480 

θ = 15% 621 1265 ,381 

θ = 20% 553 1203 ,072 

θ = 25% 400 1032 ,182 

θ = 50% 392 1005 ,387 

θ = 75% 78 232 ,321 
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ith previous studies [13,16] . As an example, the improvements of

obHet-TPC over MobHet-TP vary from 3% to 26% on the Twitter-

R dataset, and from 2% to 12% on the MobilePhone-MX dataset,

epending on the specific strategy employed to infer user contacts.

Regarding these strategies, we note that exploiting the strength

f the contacts is much better (up to 27%) than using the follower

nd followee links on Twitter. This is not surprising, as the latter

aptures a weaker relationship between the two users, and thus,

eflects potentially less influence of one user on the other. Interest-

ngly, we find that consistently for all methods and both datasets,

he best results obtained with the ContactStrength approach are

roduced for θ equal to either 25% or 50%. Smaller values of θ lead

o less conservative contact strategies, less accurate contact infer-

nces, and, ultimately, less accurate predictions. As the value of θ
ncreases, the inferences become more reliable and prediction ac-

uracy improves. Yet, very large values of θ (e.g., θ = 75% ) impose

erious constraints on the size of the training set, as the number

f users who have enough contacts in D 

training is reduced. 

The reduction on the amount of data from which the model is

earned impacts its ability to generalize, ultimately hurting its ac-

uracy on the test set. As shown in Table 4 , the number of unique

sers in the training set decreases as θ increases on both datasets.

owever, the reduction is quite sharp when θ goes from 50% to

5%, which may cause the drop in performance of the MobHet

odels. 

The results discussed above were obtained fixing the value

f parameter m , the minimum number of contacts considered to

ompute probability P (L i, j,k | C ≥n 
i, j,k 

) , at 1. We now investigate the im-

act of varying m on the results, focusing on our best MobHet
Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
odel, i.e., MobHet-TPC. Considering the two strategies used to de-

ne the contacts of a user–ContactStrength and Follower-Followed ,

e were able to find users with up to three contacts in the training

ets of both datasets. Thus, we experiment with m equal to 1, 2 and

. The results are shown in Table 5 for the same datasets and con-

act strategies analyzed in Table 3 . Note that, as we increase m , the

aximum possible value of θ used by the ContactStrength strategy

ecreases: for m = 2 , the maximum value of θ is 50%, since this

hreshold requires that a user must participate in at least half of

ll interactions (retweets or calls) of u 1 to be u 1 ’s contact. Simi-

arly, a user may have at most one contact when θ = 75% . 

Table 5 shows that the best results are obtained with m = 1 ,

mplying that, when exploiting the contacts of a user to predict the

ser’s future location, it is better to be less restrictive, and con-

ider even a single contact to perform such inference. The accu-

acy improvements over stricter policies that consider more con-

acts ( m = 2 , 3 ) can be as high as 11%. Moreover, stricter policies

ay also have a smaller applicability, as there may be fewer users

ho are candidates for prediction (i.e., users who have at least m

ontacts). As discussed in Section 3.1 , we must revert to a simpler

obHet variation that does not exploit contacts to be able to pre-

ict the mobility of such users. As a final note, Table 5 also shows

hat, for all values of m , the best results are always obtained when

he ContactStrength strategy with θ equal to 25% or 50% is used to

efine the contacts, for the reasons discussed above. 

.2. Evaluation of MobHet in other scenarios 

As explained in Section 4.2 , in addition to using time periods

f 60 min with training and testing on the same day with a time

indow of 5 min, we also evaluate the MobHet models by vary-

ng the time window to 10 min and with training and testing on

ifferent days. 

Table 6 shows the prediction accuracy for the Twitter-BR

ataset of Rio de Janeiro on 06/29/2014 and 07/13/2014 as well as

he MobilePhone-MX dataset of 03/16/2014 calls and 03/23/2014 in

ifferent scenarios. For the scenarios presented in the Table 6 , with

raining and testing on the same day, we use the collection of Rio

e Janeiro 06/29/2014 and Mexico 03/16/2014. For results of train-

ng and test in different days, we used the dataset of Rio de Janeiro

6/29/2014 for training and 07/13/2014 for testing, and the dataset

f Mexico 03/16/2014 for training and 03/23/2014 for testing. 

As similar results were obtained for other datasets, we focus

ur analysis only on the datasets presented in Table 6 . Analyzing
n mobility using heterogeneous data sources, Computer Commu- 
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Table 5 

Impact of parameter m , minimum number of contacts used to compute probability P(L i, j,k | C ≥n 
i, j,k 

) , on MobHet-TPC performance. 

Best results for each value of m are shown in bold. Overall best results are marked with “∗”. 

Twitter-BR dataset (Rio de Janeiro, 06/29/2014) 

Contact definition m = 1 m = 2 m = 3 

Follower-Followed 0 .559 ± 0.0185 0 .575 ± 0.0137 0 .536 ± 0.0141 

θ = 10% 0 .625 ± 0.0195 0 .621 ± 0.0132 0 .613 ± 0.0132 

θ = 15% 0 .640 ± 0.0190 0 .621 ± 0.0132 0 .613 ± 0.0132 

ContactStrength θ= 20% 0 .654 ± 0.0184 0 .621 ± 0.0132 0 .613 ± 0.0132 

θ = 25% 0 .678 ± 0.0193 ∗ 0 .657 ± 0.0135 0 .624 ± 0.0142 

θ = 50% 0 .684 ± 0.0197 ∗ 0 .645 ± 0.0142 

θ = 75% 0 .631 ± 0.0192 

MobilePhone-MX dataset 

Contact definition m = 1 m = 2 m = 3 

θ = 10% 0 .630 ± 0.0201 0 .621 ± 0.0132 0 .613 ± 0.0132 

θ = 15% 0 .649 ± 0.0213 0 .621 ± 0.0132 0 .613 ± 0.0132 

ContactStrength θ = 20% 0 .668 ± 0.0210 0 .621 ± 0.0132 0 .613 ± 0.0132 

θ = 25% 0 .692 ± 0.0172 ∗ 0 .657 ± 0.0135 0 .624 ± 0.0142 

θ = 50% 0 .683 ± 0.0168 ∗ 0 .645 ± 0.014 2 

θ = 75% 0 .618 ± 0.0178 

Table 6 

Average precision (along with 95% confidence intervals) of all MobHet models ( m = 1 ) for the different scenarios. Best results (and statistical ties) for each method 

are shown in bold. Overall best results are marked with “∗”. 

Twitter-BR dataset – Rio de Janeiro 

t k (min) D training D test MobHet-C ( θ = 25%) MobHet-TC ( θ = 25%) MobHet-PC ( θ = 25%) MobHet-TPC ( θ = 25%) MobHet-TP 

5 06/29/2014 06/29/2014 0 .409 ± 0.0149 0 .620 ± 0.0169 0 .653 ± 0.0177 0 .678 ± 0.0193 ∗ 0 .545 ± 0.0211 

10 06/29/2014 06/29/2014 0 .354 ± 0.0155 0 .580 ± 0.0155 0 .612 ± 0.0144 0 .631 ± 0.0172 0 .512 ± 0.0180 

5 06/29/2014 07/13/2014 0 .414 ± 0.0152 0 .625 ± 0.0171 0 .654 ± 0.0180 0 .682 ± 0.0180 ∗ 0 .555 ± 0.0202 

10 06/29/2014 07/13/2014 0 .359 ± 0.0146 0 .585 ± 0.0168 0 .618 ± 0.0167 0 .634 ± 0.0171 0 .515 ± 0.0195 

MobilePhone-MX dataset – Mexico 

t k (min) D training D test MobHet-C( θ = 25%) MobHet-TC( θ = 25%) MobHet-PC( θ = 25%) MobHet-TPC( θ = 25%) MobHet-TP 

5 03/16/2014 03/16/2014 0 .542 ± 0.0230 0 .643 ± 0.0198 0 .663 ± 0.0198 0 .690 ± 0.0172 ∗ 0 .618 ± 0.0153 

10 03/16/2014 03/16/2014 0 .501 ± 0.0245 0 .611 ± 0.0177 0 .628 ± 0.0208 0 .665 ± 0.0181 0 .575 ± 0.0162 

5 03/16/2014 03/23/2014 0 .545 ± 0.0220 0 .645 ± 0.0190 0 .667 ± 0.0191 0 .694 ± 0.0170 ∗ 0 .619 ± 0.0165 

5 03/16/2014 03/23/2014 0 .507 ± 0.0240 0 .615 ± 0.0200 0 .633 ± 0.0196 0 .667 ± 0.0190 0 .580 ± 0.0170 

Table 7 

Average precision (along with 95% confidence intervals) of MobHet-TPC ( m = 1 ) and Null Model for the different scenarios. Best 

results (and statistical ties) for each method are shown in bold. Overall best results are marked with “∗”. 

Twitter-BR dataset – Rio de Janeiro 

t k (min) D training D test MobHet-TPC ( θ = 25%) Null Model 

5 06/29/2014 06/29/2014 0 .678 ± 0.0193 ∗ 0 .225 ± 0.0250 

10 06/29/2014 06/29/2014 0 .631 ± 0.0172 0 .212 ± 0.0235 

5 06/29/2014 07/13/2014 0 .682 ± 0.0180 ∗ 0 .222 ± 0.0248 

10 06/29/2014 07/13/2014 0 .634 ± 0.0171 0 .209 ± 0.0253 

MobilePhone-MX dataset – Mexico 

t k (min) D training D test MobHet-TPC ( θ= 25%) Null Model 

5 03/16/2014 03/16/2014 0 .690 ± 0.0172 ∗ 0 .242 ± 0.0251 

10 03/16/2014 03/16/2014 0 .665 ± 0.0181 0 .235 ± 0.0241 

5 03/16/2014 03/23/2014 0 .694 ± 0.0170 ∗ 0 .238 ± 0.0250 

10 03/16/2014 03/23/2014 0 .667 ± 0.0190 0 .232 ± 0.0255 
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the difference among these scenarios, we observe that scenarios

with smaller time windows (5 min) have a prediction accuracy,

on average, 4% higher than the scenarios with larger time window

(10 min). We observe that with a larger time windows for a small

period of simulation time (in our case, 60 min), we could fail to

capture some users’ transitions between regions and, consequently,

compromising the prediction accuraty of MobHet. 

Beside the evaluation for different scenarios, we com pared our

models with a Null model. The Table 7 shows the result of our best

model, MobHet-TPC, and the results of the Null model for the same

scenarios present in Table 6 . The MobHet-TPC have, on average, a

precision accuracy of 201% higher than the Null model, confirming

the existence of human mobility in our datasets. 
Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma
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As in our experiments about training and test in different days

e did not note no significant difference when compared with the

raining and test in the same day, we decided to compare our Mob-

et models with the baselines models, SMOOTH and Leap Graph

in Section 5.3 ) using the best scenario: training and testing on the

ame day with the time window of 5 min. 

.3. Comparison of MobHet with baseline models 

After comparing our new MobHet models among each other,

e now compare them with the two baselines, SMOOTH and Leap

raph. We include in such comparison our best MobHet model, the

obHet-TPC, as well as the MobHet variation that, like the two
n mobility using heterogeneous data sources, Computer Commu- 
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Fig. 7. Average prediction accuracy of our best MobHet models and baselines on all Brazilian datasets (Twitter-BR and MobilePhone-BR)—Training and test on the same day 

and time window of 5 min. 
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aselines, does not exploit user contacts, the MobHet-TP. For the

ormer, we set m = 1 and focus on the contact definition that pro-

uces the best results, that is, ContactStrength with θ equal to 25%

nd 50%. 

Table 8 shows average prediction accuracy (along with 95%

onfidence intervals) for all models and the three datasets, con-

idering scenarios in which only calls are used (MobilePhone-BR

nd MobilePhone-MX datasets), only tweets are used (Twitter-BR

ataset) as well as both types of data are used (MobilePhone-

R and Twitter-BR datasets). For the latter, we consider both ap-

roaches to combine the data discussed in Section 4.2 : associa-
Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
ion of tweets to calls and association of calls to tweets . For both

obilePhone-BR and Twitter-BR datasets, we present results for a

ingle city and period to improve the readability of the table. We

ill discuss the results for the other cities and periods, which are

ery similar, later in this section. 

Concerning the baselines, we note that both SMOOTH and Leap

raph produce the best results when using the homogeneous data

ource for which the model was originally proposed (or evaluated).

hat is, Leap Graph achieves its best prediction accuracy when us-

ng only phone calls, while SMOOTH’s best results are obtained

hen using only tweets. Specifically, by looking at the results
n mobility using heterogeneous data sources, Computer Commu- 
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Table 8 

Comparison of best MobHet models against baselines: average prediction accuracy and 95% confidence 

interval. Best results for each scenario in bold. 

MobilePhone-BR and Twitter-BR datasets 

Rio de Janeiro, 06/29/2014 

Models Calls Tweets Tweets to calls Calls to tweets 

SMOOTH 0 .368 ± 0.0177 0 .521 ± 0.0189 0 .481 ± 0.0193 0 .516 ± 0.0189 

Leap Graph 0 .788 ± 0.0178 0 .451 ± 0.0195 0 .745 ± 0.0187 0 .422 ± 0.0189 

MobHet-TP 0 .799 ± 0.0192 0 .545 ± 0.0211 0 .744 ± 0.0186 0 .531 ± 0.0164 

MobHet-TPC ( θ = 25%) 0 .678 ± 0.0193 

MobHet-TPC ( θ = 50%) 0 .684 ± 0.0197 

MobilePhone-MX dataset 

Models Calls Tweets Tweets to calls Calls to tweets 

SMOOTH 0 .345 ± 0.0221 

Leap Graph 0 .613 ± 0.0199 

MobHet-TP 0 .619 ± 0.0153 

MobHet-TPC ( θ = 25%) 0 .692 ± 0.0172 

MobHet-TPC ( θ = 50%) 0 .683 ± 0.0168 
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produced for the Brazilian datasets (MobilePhone-BR and Twitter-

BR), we note a performance degradation of 43% for Leap Graph

and 29% for SMOOTH if a different type of data (though still

homogeneous) is used. As for the scenarios with heterogeneous

data sources, the prediction accuracy of each model was some-

what worse that its best results. Thus, we observe that the per-

formance of both baseline is very dependent on the type of data

used as input, and suffers some degradation when heterogeneous

data sources are used as input. 

In contrast, MobHet-TP, our model that, like the two baselines

does not exploit user contacts, has a performance that is at least

as good as (if not better than) that of the best baseline in all sce-

narios. For example, we note that MobHet-TP has an average pre-

diction accuracy that is slightly better than that of Leap Graph, but

much higher (117% in MobilePhone-BR and 80% in MobilePhone-

MX datasets) than SMOOTH in the scenarios with only calls as

data source. If only tweets are used as input data, MobHet-TP out-

performs Leap Graph by 21%, producing results similar to those

of SMOOTH (Twitter-BR dataset). Note that MobHet-TP results are

much better when only calls as used, compared to when tweets

are used. The reason for that is a much larger number of distinct

regions which are present only in the test set (but not in the train-

ing set) of the Twitter-BR dataset. The model is not able to predict

a movement towards a region that did not appear in the training

set, since this region is not included in transition graph G . 

In the scenario with heterogeneous data sources (Brazilian

datasets), MobHet-TP features a performance slightly worse when

compared with the scenarios with a single homogeneous data

source, but still higher on average than that of the baselines. As

to the two strategies to combine the data sources, we note that all

models perform between when the association targets the type of

data for which the model has higher accuracy (e.g., calls for Leap

Graph and MobHet-TP, tweets for SMOOTH). 

The introduction of user contacts into MobHet produces further

improvements over both baselines. For example, in the Twitter-

BR dataset, our best MobHet-TPC model outperforms SMOOTH

by 31% and Leap Graph by 52%. In the MobilePhone-MX dataset,

the improvements are 90% and 13% respectively. Indeed, by cross-

referencing Table 3 and 8 , we note that even when the less effec-

tive contact definition ( Follower-Followed on Twitter-BR, and Con-

tactStrength with θ = 75% on MobilePhone-MX) already produces

improvements over both baselines. 

Although the results shown in Table 8 for the Brazilian datasets

are for a single city and time period, the same relative performance

of all methods was observed for all 27 individual collections that

compose those datasets (see Table 2 ). This is illustrated in Fig. 7 (a–

t  

Please cite this article as: L.M. Silveira et al., MobHet: Predicting huma

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013 
) for three scenarios, two with homogeneous data and one with

eterogeneous data sources and with time window of 5 min and

raining and test at the same day. Overall, when using only calls

s input data ( Fig. 7 (a)), MobHet-TP produces accuracy improve-

ents of 6% and 114% over Leap Graph and SMOOTH, respectively,

n average. When using only tweets as input ( Fig. 7 (b) ), our best

odel—MobHet-TPC with θ = 50% produce average improvements

f 71% and 33%, respectively. In the scenario with heterogeneous

ata ( Fig. 7 (c) ), the improvements are still quite noticeable, reach-

ng, on average, 110% over SMOOTH, and 4% over Leap Graph. 

. Conclusion and future work 

We have proposed MobHet, a new family of models to pre-

ict human mobility from heterogeneous data sources. The Mob-

et models exploit a subset of the popularity of different regions

n a target area, the frequency at which people moves between

ifferent regions as well as the relationships (or contacts) among

eople. We evaluated our proposed models, comparing them with

hemselves and with two baseline solutions from the literature,

n various scenarios, with homogeneous and heterogeneous data,

uilt from large real-world datasets of mobile phone calls and

weets. Our experiments indicate that neither baseline outperforms

he other in all scenarios, demonstrating their sensitivity to the

ype of input data. In contrast, our MobHet models are at least as

ood as, if not much better than, the best baseline in all scenar-

os. Moreover, for all scenarios with a varied set of parameters, we

nd that all three features—region popularity, frequency of transi-

ion between regions and user contacts—are important to mobility

rediction, since leaving any of them out causes loss of prediction

ccuracy. Regarding specifically the definition of user contacts, our

esults show that less restrictive strategies may lead to very unreli-

ble contact inferences, ultimately hurting prediction. On the other

xtreme, very strict contact inferences may excessively constraint

he size of the training set, which in turn also hurts model gener-

lity and accuracy. 

This work opens up many perspectives for future work building

pon our current models. For example, we intend to further inves-

igate other alternatives to define user contacts, possibly exploiting

emporal and spatial information. In that direction, one could en-

ision different classes of contacts, such as those that a user often

eet at daytime and those whose interaction occur more ofter at

ighttime. Another direction we plan to pursue in the future re-

ates to the division of the target area into a set of regions. In-

tead of taking a uniform division (as performed here), we intend

o explore approaches that take sociocultural, demographic, and/or
n mobility using heterogeneous data sources, Computer Commu- 
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dministrative aspects into account. For example, one alternative

pproach would be to break the target area of a city into city dis-

ricts. Another example is to use other features connected to the

ser, like his/her historical record to predict the location. Mobil-

ty prediction in such scenario could provide valuable insights into

ore effective policies for city planning. Finally, we also intend to

xplore other mobility prediction tasks. For example, we intend to

evelop models to predict the volume of people who will be at a

ertain region in a target time period. 
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