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The literature is rich in mobility models that aim at predicting human mobility. Yet, these models typi-
cally consider only a single kind of data source, such as data from mobile calls or location data obtained
from GPS and web applications. Thus, the robustness and effectiveness of such data-driven models from
the literature remain unknown when using heterogeneous types of data. In contrast, this paper proposes
a novel family of data-driven models, called MobHet, to predict human mobility using heterogeneous
data sources. Our proposal is designed to use a combination of features capturing the popularity of a
region, the frequency of transitions between regions, and the contacts of a user, which can be extracted
from data obtained from various sources, both separately and conjointly. We evaluate the MobHet mod-
els, comparing them among themselves and with two single-source data-driven models, namely SMOOTH
and Leap Graph, while considering different scenarios with single as well as multiple data sources. Our
experimental results show that our best MobHet model produces results that are better than or at least
comparable to the best baseline in all considered scenarios, unlike the previous models whose perfor-
mance is very dependent on the particular type of data used. Our results thus attest the robustness of
our proposed solution to the use of heterogeneous data sources in predicting human mobility.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction Focusing specifically on human mobility prediction, recent stud-

ies have shown that human mobility in urban areas can be fairly

The analysis of human mobility patterns can assist in the design
of various mechanisms to help improving the quality of services
that support urban life [1]. For example, the knowledge of typical
patterns of human mobility within a target geographic area, such
as a large urban center, can drive the management and planning of
transportation routes to minimize the chance of congestion during
heavy traffic periods and the planning of urban occupation, as well
as support decisions towards a faster contention of the spread of a
disease [1,2]. Moreover, such knowledge may also support a more
cost-effective planning of the infrastructure of mobile phone net-
works [3], thus improving the quality of service offered by carriers.
Understanding human mobility within a particular region is also
a key step towards building human mobility prediction models,
which can support the design of various services, such as location-
based recommendation systems [4-6].
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predictable considering daily routines [5,7]. Yet, most mobility pre-
diction models available in the literature [8-11] have been pro-
posed or at least evaluated considering only a single type of data,
such as data associated with mobile phone calls or georeferenced
data collected from GPS and web applications. The use of differ-
ent types of data from heterogeneous sources, however, can lead to
more accurate mobility predictions or at least to a larger coverage
of the population [12]. Although some previous prediction models,
proposed specifically in the context of location recommendation,
do exploit data from different sources, such sources are often dif-
ferent Web applications (e.g., Twitter and Foursquare) [13], which
share common aspects (e.g., mobility inferred from user check-ins).
To the best of our knowledge, no previous study investigated the
prediction of human mobility by combining data from as hetero-
geneous sources as mobile phone calls and online social networks
(e.g., Twitter).

In this context, this article presents a novel family of data-
driven models, called MobHet, to predict human mobility using
heterogeneous data sources. The design of the MobHet models
combines principles and assumptions explored by two existing
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mobility prediction models that we use as baselines, namely Leap
Graph [8] and SMOOTH [9]. Notably, MobHet exploits the pop-
ularity of different regions within the target geographic area, a
feature also used by SMOOTH, as well as the frequency of tran-
sitions across different regions, the main feature used by Leap
Graph. Moreover, previous studies have observed that the contacts
among people may influence their movement patterns [11,14,15].
That is, a person may be influenced by whom he/she knows is go-
ing to a certain place. In this case, human mobility prediction mod-
els that consider relationships which demonstrate prior knowledge
between users (e.g., friendship) may produce better results than a
model that disregard such information [16]. Motivated by this ob-
servation, some MobHet models may also exploit the (locations of)
contacts of a person to predict his/her location, an aspect that was
neglected by the aforementioned baseline methods. By exploring
different combinations of these three features—popularity of a re-
gion, frequency of transitions between regions, and contacts among
people—we define the proposed MobHet models that aim at pre-
dicting where a person will be located in a given future time.

A key aspect that distinguishes the MobHet models from prior
work is the type of data source used to support the human mobil-
ity predictions. Unlike the baseline models, MobHet was designed
to use data from heterogeneous sources, both separately and con-
jointly. We here show the use of the MobHet models with mobile
phone data and data collected from a online social network. How-
ever, in principle, any type of data from which the considered fea-
tures can be extracted (or inferred) could be used.

We evaluate the prediction accuracy of MobHet models, com-
paring them with themselves and with both SMOOTH and Leap
Graph, the two single-source data-driven models from which Mob-
Het was inspired, in various scenarios consisting of: (i) homoge-
neous data from a single source, for different types of data, notably
mobile phone call logs or GPS location data collected from Twitter;
and (ii) the combination of data from both sources. The evaluation
is performed using a large set of different real-world datasets col-
lected in different locations and time periods, involving hundreds
of thousands to millions of users depending on the dataset, with
a number of events (mobile phone calls or posted tweets) in the
same order of magnitude.

Our experimental results indicate that our best MobHet model,
which exploits all three aforementioned features conjointly, pro-
duces the most accurate predictions, being at least comparable
to or superior than the best baseline, in all evaluated scenarios.
In contrast, the performance of both SMOOTH and Leap Graph
is very dependent on the particular type of data used. SMOOTH
achieves results comparable to our best model using Twitter loca-
tion data, but presents much lower performance in the other sce-
narios, whereas Leap Graph obtains results similar to our best so-
lution for mobile phone data (for which it was designed) and also
when the data from the two sources are combined. Yet, the perfo-
mance of Leap Grap falls behind both SMOOTH and MobHet when
only Twitter location data is used.

In short, the contributions of this paper are: (i) the proposal of
a family of mobility prediction models that exploit combinations
of features as well as different heterogeneous sources of data; and
(ii) a thorough evaluation of our models, as well as of two base-
line models—SMOOTH and Leap Graph—in different scenarios with
homogeneous and heterogeneous data sources while considering
different time windows for mobility inference. Overall, our evalua-
tion attests the robustness of the proposed MobHet solution to the
use of heterogeneous data in predicting human mobility.

The remainder of this article is organized as follows.
Section 2 formally states the problem of human mobility predic-
tion we tackle, discusses related work on human mobility models,
and explains the operation of the two models adopted as baselines.
Section 3 introduces our new MobHet models. The data sets used

Table 1
Adopted notation to model the human mobility prediction.
Variable Definition
U Set of users
R Set of regions
T Set of time windows
ptraining Training set composed of tuples < u;, rj, t; >,

where u; € U, 1j € R, and t; € T, used to learn
the human mobility patterns and to derive the
prediction models

plest Test set composed of tuples < u;, 1j, t; >, where u;
e U rj e R, and t; € T, used to evaluate the
prediction models

pj Popularity of the region r; € R, learned from
D[raining

hi1, 2 Frequency of transitjqns between rj; and rj,,
learned from ptraining

Wi, j2 Weight of edge (rj1, 1), learned from Dtraining

Parameter used to define the size of a region: it
may be the size of the side, in the case of square
regions, or the radius in the case of circular

regions

Saist Distribution of distances traveled by a user u; € U
during a movement

Spause Distribution of time intervals between successive
movements of a user u; € U (i.e., pause times)

[— Max number of time windows in Dtraining

G Set of contacts of user u; € U, learned from ptraining

Lij k Event user u; is located in region r; during time
window ¢,

m The minimum number of contacts of all users

f]",'( Event at least m contacts of user u; are located in
region r; during time window ¢

Number of times user u;; interacted with u;,

Strength of the contact between u;; and uj,, from
the perspective of u;;

0 Threshold used to determine the list of contacts of

a user, according to the ContactStrength approach

ninteractions;; i,
ContactStrength;; i

in the experiments and the adopted evaluation methodology are
presented in Section 4. Section 5 discusses our main experimental
results, while conclusions and possible directions for future work
are presented in Section 6.

2. Background

We start this section by first introducing the human mobility
prediction task we aim at addressing in this paper (Section 2.1).
Next, we briefly discuss previous related studies (Section 2.2), delv-
ing further into the presentation of two reference mobility pre-
diction models, namely SMOOTH and Leap Graph, which are used
as baselines in our experimental evaluation (Section 2.3). Table 1
presents the main notation used in this section as well as through-
out the paper.

2.1. Problem statement

The prediction task we tackle in this article can be defined as
follows. Given a target geographic area, defined of a set R of non-
overlapping regions 1; € R, a set of users u; € U and a set of time
windows t, € T, we want to build a model to predict where (in which
region r;) a given user u; will be at a future time window tj.

To tackle this prediction problem we assume that a training set
prraining a5 well as a test set DSt are given: each such set con-
sists of tuples < u;, 1, t, >, indicating that u; was in region r; dur-
ing time window t;. Moreover, both sets may contain data from
which we can infer that a relationship demonstrating prior knowl-
edge (e.g., friendship) between users u; and u; (u; # u;) exists. We
refer to such relationship as a contact between u; and u;, and we
define the set of contacts of user u; as C;. We want to learn the
prediction model, possibly inferring the set of contacts of each user
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u;, using only data in the training set D!™"ing We want to evaluate
the learned model using the test data, that is, we want to use the
model to predict the location (i.e., region) r; for each tuple < u;, ?,
t, > in the test set D',

Note that the definition of regions r; can be done in several
ways. For example, each region may be defined by a center point
X;, J; (e.g., the coordinates of an antenna in case of mobile phone
data) and a radius d. Alternatively, each region may be defined by
a squared area with center x;, y; and side d (total area d?). We
here adopt the latter definition by dividing the total target area
into non-overlapping squared regions r;, as a grid.

Also note that, in this article, we discretize the total time in-
terval T in consecutive fixed time windows t; for the purpose of
determining the movements of each user. In other words, the lo-
cation of a user is predicted considering the granularity of each
window f.

The split of the data into training and test sets can also be per-
formed in different ways, depending on the data available. Regard-
less, the split should respect time constraints, i.e., training data
must precede the test data chronologically (ie., V < * * t; >
e piraining and V < * * 1, > € DIt < t4,)'. Moreover, consid-
ering that human mobility patterns vary through the day or even
on different days (e.g., weekdays and weekends) [3], the training
data should reflect time periods comparable to those covered in
the test set. For example, if we wish to predict the location of
users between 8AM and 9AM, the training data used to build such
model should have been collected during that same period in pre-
vious days or in a period short before the target one on the same
day (so that the assumption of similar mobility patterns still hold).
The definition of the training and test sets in our experiments will
be discussed in Section 4.1.

2.2. Related work

The literature is rich in solutions that aim at supporting human
mobility prediction. The existing methods exploit different types
of data as well as various strategies to try to predict, as accu-
rately, as possible, the future location of people (i.e., users) [17].
Some of these models aim at predicting the trajectory of users us-
ing GPS data [18] or mobile phone data [8]. Others make the pre-
dictions using statistical distributions that capture specific patterns
extracted from the data, such as the distribution of the distances
traveled by a user during a movement [9,10,16,19].

Other studies, such as [20] and [21], explore various patterns
observed in the data, such as the places visited by people, the fre-
quency of the visits and the regularity of a user mobility patterns.
In [22], the authors explore the places visited as well as the dis-
tances covered by a user within the same region to predict the
user location at a future time. In [14], the authors address the pre-
diction mobility considering a combination of short-ranged paths
and long distance travels. They find that while the former is pe-
riodic, both spatially and temporally, the latter is more influenced
by the user’s social network ties.

Similarly, using GPS data collected from georeferenced social
networking applications, both Davis et al. [23] and Nguyen et al.
[24] propose mobility prediction models that exploit not only the
distances traveled and the locations visited by users, but also
the friendship relations between users (extracted directly from
the data). In other words, the models assume that a person will
have more chance to go to a place where his/her friends often visit.
Some other prior efforts infer such friendship relations from the
data and use them to study the relationship between friendship

T The chronological split is motivated by the goal of evaluating the prediction
model in a realistic scenario where only historical data, collected at previous time
periods, is available to build the prediction model.

and mobility. Alharbi et al. [25] created a model to predict users’
social ties from the locations visited by them. The assumption ex-
plored by the authors is that two people who visit the same loca-
tion at the same time interval can be considered friends. Scellato
et al. [13] take a step further and assume that a social bond exists
between two users if they are located in nearby locations.

In common, all those previous models of human mobility have
been proposed or evaluated considering a single type of data,
either data associated with mobile phone calls [2,8,26] or GPS
data [9,14,19,24,27-29]. Although some prior efforts explored data
from different sources, they often combine similar data (e.g., check-
ins) from different Web applications (e.g., Twitter and Foursquare)
[4,13]. The robustness of these models when configured using dif-
ferent type of data, either separately or jointly, is still unknown.
Moreover, the recent study by Hess et al. [12] show how the use
of heterogeneous sources may lead to more accurate mobility pre-
dictions or at least to a larger coverage of the population.

This observation motivated us to design the MobHet models, in-
troduced in Section 3. MobHet is actually a family of models that
can use multiple data sources to learn mobility patterns and pre-
dict the future location of users. MobHet inherits some of its fea-
tures from two reference models, namely SMOOTH [9] and Leap
Graph [8]. Nevertheless, MobHet goes beyond both reference mod-
els, by also exploiting the relationships (or contacts) among people
to predict mobility, as done by other prior efforts [23,24]. More-
over, unlike SMOOTH, Leap Graph and the other models that ex-
ploit user contacts, MobHet can be configured with different types
of data as input.

This work greatly extends a preliminary effort of ours to de-
velop human mobility prediction models [30]. In our prior work,
we proposed a single model that exploits only two sets of features,
namely region popularity and the frequency of transitions between
different regions. In this article, we go much further by proposing
a family of models, which differ in terms of the features they ex-
ploit: in addition to the two aforementioned features, our models
also make use of the relationships (contacts) among the users. By
comparing all proposed models, we are able to assess the extent
to which each such feature is important for mobility prediction,
which has not been analyzed before. Moreover, we evaluate differ-
ent strategies to infer user contacts from the data, as will be fur-
ther discussed in Section 3.2. Finally, we here evaluate our models
much more thoroughly than in [30], covering more datasets and
scenarios.

Before introducing our new MobHet models, we first describe
how our two baseline models, SMOOTH and Leap Graph, work
next.

2.3. Baseline models

This section describes the main components of the two refer-
ence models adopted in this work, SMOOTH [9] and Leap Graph
[8]. In our experiments, we used as reference the implementations
of both models made available by the authors?. In order to to en-
able the comparison of the models, we did few code changes, e.g.
in Leap Graph. These changes will be explained in Section 2.3.2.

2.3.1. SMOOTH

The SMOOTH model [9] was originally designed to reproduce
patterns of human mobility and not to predict the future location
of a user. However, after analyzing the model source code made
available by its authors, we noticed pieces of code (and associated

2 SMOOTH: http://toilers.mines.edu/Public/Code/smooth.html Leap Graph:
https://www.cs.utexas.edu/~wdong86/. We had accessed both source codes on
October 28th, 2015.
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comments) that enable SMOOTH to predict user locations. There-
fore, for comparison purposes, we considered in this paper this
particular implementation of SMOOTH as available in the original
code. Moreover, the original model captures the movements of a
group of users in a simulated two-dimensional area consisting of
a set of circular regions. Yet, for the sake of a fair comparison, we
used the same region definition based on a grid for all considered
models. That is, we assumed a simulated area which is divided into
a set of non-overlapping squared regions. Each region r; is defined
by the coordinates x;, y; of its center and a side d.

The main assumption of SMOOTH is that people tend to move
towards popular regions. Thus, each region r; has an associated
probability p; that a user will move towards it. The probability p;
captures the popularity of the region r;, that is, the expected num-
ber of people visiting r;, and this probability is extracted from the
training set.

The basic idea of SMOOTH is to simulate the movement of the
users in U in a sequence of steps. Each step corresponds to a time
window ¢, using two distributions extracted from the training set:
the distribution of distances traveled by a user during a movement
faise and the distribution of pause times fpquse between successive
movements.

The simulation works as follows. At each step, for each user
who is not paused (explained below), we first compute the direc-
tion of the movement in relation to the user’s current location and
the probabilities associated with each region r; € R, and then ran-
domly select a distance using fy;;;. We then simulate the movement
of the user using both the direction and distance selected to de-
termine where (i.e., in which region) the user will be in the next
time window. Then, we randomly pick a pause time using fpause.
and simulate the user staying in the same location during the se-
lected time. After each step, the probabilities associated with each
region are recomputed.

Thus, the training of the model is done in two stages. The first
consists of extracting distributions fy;;; and fpause as well as the ini-
tial set of regions R and their probabilities p; from the training
set Diraining Al| regions that have users in Dr@ning are initially in-
troduced in R with the corresponding probabilities. In the second
stage of the training, the initial positions of the users are deter-
mined from the probabilities associated with the regions, and the
movements of each user are simulated using distributions fy;; and
Spause for a number of time windows equal to tmgx (i.e., the number
of time windows in DtTaining) Note that new regions may be dis-
covered during this phase (i.e., regions in the grid with no user in
the training set). These new regions are inserted into set R, with
their associated probabilities.

During the test phase, the movements of the users in set Dt
are simulated using the model learned during training, keeping the
set R fixed and considering the starting location of each user given
by the user’s first appearance in D', The regions visited by users
during the simulation are compared with the data available in Dt
to assess the accuracy of the predictions.

2.3.2. Leap Graph

In [8], the authors investigated how to use mobile phone data
to predict the mobility of users and proposed a new mobility pre-
diction model named Leap Graph. They assumed as input a log of
phone calls, each one characterized by the following information:
unique user identifier, the time instants of the beginning and end
of the call, the coordinates (latitude and longitude) of the antennas
where the call started and ended, and the identifiers of the sectors
used in those antennas’.

3 Each antenna is divided into 3 sectors of 120°, each one responsible for about
one third of the antenna coverage area.

In its original implementation, Leap Graph assumes that each
region 1; € R is associated with an antenna, being defined by the
antenna’s coordinates and a radius d corresponding to the an-
tenna’s coverage area. However, for the sake of a fair comparison,
we here assume the same region definition for all models, based
on a grid, as defined in the previous section®. Thus, calls are asso-
ciated with the regions where the used antennas are located. That
is, a call from user u; associated with an antenna located within
region r; at time t is interpreted as an evidence of the presence of
u; in that region during the time window ¢, that includes t. The
model attempts to infer the movement of each user from a graph
that captures the trajectories of users across the regions of R.

The training phase consists primarily in creating a graph of tra-
jectories for each user using the data in DI®"ng, In graph g; cre-
ated for user u;, each vertex corresponds to a region. An edge be-
tween rj; and rj, is added when: (i) u; made a call that started
in rj; and terminated in rj,; or when (ii) u; made two consecutive
calls, the first one in rj; and the second in rj,.

As originally proposed, Leap Graph aims to predict the next re-
gion where a user will be located given its current location. There-
fore, it does not consider the time dimension and only explores the
transitions between regions made by each user. To make it com-
parable to SMOOTH and to our proposed MobHet models (which
consider user movements over time) and to apply it to our target
prediction task, we added self-loops to each vertex to capture the
staying of a user in the same region in successive time windows.
We also assigned weights wj; j, to each edge (rj;, ), including
self-loops, to capture the probability of a user moving towards the
destination region rj, (or staying in the same region, in case of a
self-loop) in the next time window.

To compute such weights we make two key assumptions: (1)
the time interval between two successive calls from the same user
is equally divided between the two regions where the calls took
place®, and (2) a transition between two regions occur in a single
time window. Specifically, suppose that user u; made two consec-
utive calls, one during time window f,; while located in region
rj1, and the next one during time window ty, while in region rj.
From this data, we are not able to infer how long u; remained in rj
(which is important to compute the weight of the self-loop associ-
ated with rj;) before moving to rj; nor how long such movement
took. Thus, we assume that: (1) the user remained half of the time
interval between t; and t, in rj; and the other half in rj, and (2)
the transition between the two regions happened during one time
window. This is obviously an approximation, but it was a design
choice based on the available data.

Given such assumptions, we first compute the weight of each
edge (including self-loops), wj;, j,, as the total number of times the
user performed the corresponding transition. In the case of self-
loops, the weight corresponds to the total number of time win-
dows during which the user remained in the corresponding region.
Putting in other words, the weight of a self-loop is equal to the
number of times a transition to the same region was performed,
assuming transitions occur during one window. Let us consider the
same example of a user who made two calls, one during t;; while
in rj; and the next one in t, while in rj,. In this case, we would
assign the weights of the two self-loops as wj; j1 = wjp jo = t"zgt’“ ,
and the weight of the edge between rj; and rj, as wj1, j2 = 1. This
computation is performed for each edge of each graph g;. Note
that, given such design choice, we are not able to capture trips

4 We note however that preliminary experiments with the same region definition
as in the original papers of both SMOOTH and Leap Graph (i.e., circular regions)
led to similar conclusions in terms of the relative performance of all models in all
considered scenarios as those reported in this article.

5 For calls that started and ended in different regions, we assume that the dura-
tion of the call is equally divided between the two regions.
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starting and ending within the same time window. That is, we cap-
ture time differences at the granularity of time windows.

As proposed in [8], the individual graphs created are then com-
bined into a single weighted graph G which captures the move-
ments of the population of users in D", To that end, the user
graphs g; are sorted in an order given by the time of the first call
of each user in DIraning and then processed as follows. The edges
of all graphs are combined into G. Each edge weight is recomputed
to represent the average over all individual graphs. Moreover, at
the end of the training phase, the weights of all edges leaving the
same vertex (including self-loops) are normalized to add up to 1,
so as to represent probabilities of a user performing the transition
(or remaining in the same region, in case of self loops) in one time
window.

One particular issue regarding the combination of individual
graphs in G deserves further explanation. Dong et al. [8] consider
that users who visit the same sequence of regions tend to con-
tinue following the same route. That is, if two graphs capturing
the trajectories of two users have one or more paths covering the
same edges, with at least n (an input parameter) edges in com-
mon, the two trajectories are considered “similar”, and the edges
of the second graph following the common path are disregarded.
As an example, suppose that graph g; contains the trajectory {rq,
9, 13, 4} and graph g, contains the trajectory {ry, 1y, 13, 15}, and
suppose parameter n is set to 2. Given that trajectory {ry, 1, 13},
with n = 2 edges, appears in both graphs, the edges present in
g, following the common path (i.e, (13, r5)) would be disregarded.
Graph G would contain the edges that build trajectory {ry, ry, 13,
r4}. The weights of edges (rq, 12) and (15, r3) would be equal to 2
(prior to normalization), and the weight of (r3, r4) would be set
to 1. Thus, parameter n specifies a minimum number of edges in
common that two graphs should have to be considered “similar”
trajectories and to cause edges of the second graph to be disre-
garded. According to the authors, this measure is taken to avoid
double counting the same trajectory, since they only consider the
path and not the volume of users who traverse between regions.

During the test phase, Leap Graph simulates the movement of
users using graph G. The initial location of each user is defined
from the user’s first call in D', This corresponds to a vertex in
graph G. We use the edge weights as probabilities to simulate the
movements of each user and infer his/her location in successive
time windows. In our experiments, we set the number n of edges
equal to 2, as this produced the best results in [8].

3. The new MobHet models

In this section, we introduce a new family of data-driven hu-
man mobility prediction models, named MobHet. Unlike prior
models, MobHet exploits a combination of the following features:
popularity of regions, the frequency of transitions among regions,
and the contacts of each user. In the following, we first explain
how MobHet works (Section 3.1), and then we discuss different
strategies applied to define the contacts of a user (Section 3.2).

3.1. MobHet operation

The MobHet model® exploits heterogeneous data sources, either
jointly or individually, to capture the movement of users among
regions r; in R. Once again, we assume the total area simulated is
divided into squared regions r; (with center x;, y; and a side d) as
a grid.

6 Details about the implementation of MobHet, including source code, as well
as our implementation of the (modified) Leap Graph, can be found in http://
homepages.dcc.ufmg.br/~lucasmsil/Mobhet.html.

MobHet inherits some aspects of the two baseline models. As
done in SMOOTH, we associate a popularity measure with each
region r;. Similarly to Leap Graph (and unlike SMOOTH), MobHet
simulates the movement of users between regions with a region
transition graph G, with self-loops representing the permanency of
a user in the same region in successive time windows. However,
unlike Leap Graph, the creation of graph G does not start with the
graphs of individual trajectories for each user, but rather considers
all regions visited by all users jointly. The weight of an edge (in-
cluding self-loop) is computed by exploiting a combination of the
three features, region popularity, frequency of transition between
regions, and user contacts, as discussed below.

In MobHet, the popularity of a region r;, pj, is given by the num-
ber of users who visited r; in the training set ptraining (may be 0),
while the frequency of transition between regions rj; and rj,, de-
noted by hj; j», is given by the average number of times the transi-
tion was performed in consecutive time windows by the same user
(also in Dtreining) Note that, like in Leap Graph, the weight of a
self-loop captures the average number of time windows a user re-
mains in the same region, as this is interpreted as successive tran-
sitions from/to the same region. Moreover, just like in Leap Graph,
we assume that the time between successive pieces of evidence of
the user location (e.g., successive calls, successive tweets) is equally
divided between the two associated regions, and that the move-
ment between the two regions occurs in a single time window.

Motivated by previous observations that a user’s social links
may influence her/his movements [13,16], we also exploit the con-
tacts among users in the design of MobHet. A contact between two
users can be defined as any interaction held between them that in-
dicates some prior relationship. This is a very broad notion, which
can be instantiated in different ways, depending on the data avail-
able from which such contacts will be extracted. We discuss the
adopted strategies to define the contacts of a user in Section 3.2.

Given the lists of contacts of each user, we define the probabil-
ity P(L,-,j,k|Cl.,Zj’T;<) of finding user u; in region r; in time window f;
(event L; ; i), given that at least m contacts of user u; are located
in the same region in the same time window (event Cfﬁ). That is

P(Lijx A Cfﬁ)
PCT)

1,

P(Li kG =

1,

As the other two features, namely region popularity (p;) and
frequency of transition between regions (h;j; j,), the probabilities
P(L; j,k|Cf}”}() are computed using the training set ptraining,

In its present form, MobHet builds a single graph that captures
an aggregated behavior of the whole user population’. For exam-
ple, when exploiting user contacts to build such graph (as dis-
cussed below), we take the mean probability P(L; j,kIij’.'}{) across
all users. Similarly, region popularity and frequency of transitions
capture the interests for particular regions and movements across
regions of the whole user population. We chose to do so for the
sake of simplicity and to have a first-cut estimate of the benefits
of capturing (a subset of) the three aforementioned features for
mobility prediction, even in an aggregated way. However, we note
that MobHet could be extended to employ other strategies. For
instance, we could compute the considered features across clus-
ters of users with similar mobility patterns (learned from historical
data), thus building different graphs, one of each cluster. This ap-
proaches would be more costly, but could potentially lead to bet-
ter results. We leave those extensions and a thorough evaluation
of their benefits for future work.

7 Note that both SMOOTH and Leap Graph also capture aggregated behavior of all
users.
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Given the three sets of features, we define a family of predic-
tive models, called MobHet. Specifically, we define the following
variations of MobHet:

1. Transition and popularity (MobHet-TP): exploits only the fre-
quency of transitions between regions and the popularity of
each region. In this case, the weight of edge (rj;, 1) is defined
Wji jp = hji jp x pjp for any edge (i.e, j1 # j2 or j1 = j2). That
is, in this case, the probability P(Li,jzvk|ij’;k) is disregarded;

2. Transition and contacts (MobHet-TC): exploits only the frequency
of transitions between regions and the contacts of each user.
In this case, the weight of edge (rj;, rj2) is wjy jo =hj; jo x
P(h_p,k[fﬂ,) for any edge (i.e., j1 # j2 or j1 = j2);

3. Popularity and contacts (MobHet-PC): the weight of edge (rj;,
rjz) is Wij1,j2 = Pja2 X P(Ll]2k|clzjr;k) for any edge (le,]] # ]2 or
j1=j2);

4. Only contacts (MobHet-C): the weight of edge (rj;, 1jp) is wj; jo =
P(Li.jz,k|cf}121,k) for any edge (i.e., , j1 # j2 or j1 = j2);

5. Transition, popularity, and contacts (MobHet-TPC): exploits all
three features jointly. In this case, the weight of edge (1}, 1j) is
given by wjy jo = hjj jo x pjp x P(Li‘jz_k|ijTg_k) for any edge (i.e.,
j1 #j2 or j1 = j2).

In all cases, the weights are normalized to represent transition
probabilities (i.e., the sum of the weights of all edges leaving a ver-
tex must add up to 1).

MobHet thus differs from both Leap Graph, which considers
only the transitions between regions, and from SMOOTH, which
exploits only the popularity of each region. Our family of mobil-
ity models considers that both aspects as well as the contacts of
a user may influence the trajectory of the user: (i) on one hand,
users tend to visit specific locations depending on his/her current
location (as shown in [8]); (ii) on the other hand, the popularity of
a region [9,29], as well as the location of the contacts of the user
[24] may also influence where the user goes next. By comparing
the aforementioned five variations of MobHet against themselves
as well as with both SMOOTH and Leap Graph, we are able to as-
sess the extent to which each of the three features is important
to improve prediction accuracy, either in isolation (e.g., MobHet-C,
SMOOTH) or combined (e.g., MobHet-TPC, MobHet-TP). We discuss
the results of this evaluation in Section 5.

The training phase of each MobHet model consists in learn-
ing from the training set the values of the three used features
and build the transition graph G. We illustrate this process for the
MobHet-TP model in Fig. 1. In Fig. 1(a), the vertices are labeled
with the region popularity values (e.g., p, = 5 for ;) and the edges
are labeled with the frequency of transitions (e.g., hy , = 4 for edge
(r1, 12)). The edge weights (wj;, j,) are first computed as the prod-
uct of both measures (Fig. 1(b)) and then normalized (Fig. 1(c)).
Note that, like Leap Graph, we are not able to capture trips start-
ing and ending within the same time window.

The test phase consists of simulating graph G, as done for Leap
Graph. One final issue refers to the use of the MobHet models
that exploit user contacts (i.e., MobHet-C, MobHet-PC, MobHet-TC,
and MobHet-TPC) in cases where we cannot infer the location of
enough contacts of the user. In that case, we revert to the corre-
sponding MobHet variation without contacts. For example, suppose
we are using MobHet-TPC to make predictions. If a prediction is
to be made for a user u; who does not have at least m contacts
in D't we then choose to use MobHet-TP instead. Similarly, we
use MobHet-P (MobHet-T) for users with not enough contacts, in-
stead of MobHet-PC (MobHet-TC). Therefore, during test phase, we
keep always a pair of transition graphs, switching between them
depending on whether the target user has enough contacts or not.
If MobHet-C is the model in use, only predictions for users with at
least m contacts in D' can be made.

3.2. User contacts

Having described the general operation of MobHet, we now ex-
amine how to define a contact of a user. As mentioned above, a
contact between two users can be defined as any interaction be-
tween them that can serve as evidence that such users know each
other (virtually or in the real world). For example, a phone call in-
volving two users can be used as evidence that these users know
each other, thus implying that they are contacts of each other. Sim-
ilarly, a social link between two users in a Web application, such
as a follower-followee connection on Twitter, can also be used to
define the contacts between users.

We here evaluate two strategies to define the contacts of a user.
The first one, which has already been addressed in the literature
[13,21,22,28], uses the friendship ties present in online social net-
works, being suitable to be used when data from such applications
is available. Specifically, we here use the follower-followee links
on Twitter. That is, if user uy follows and is followed by user u,,
they are considered contacts of each other. We refer to this strat-
egy as Follower-Followed.

The second strategy, referred to as ContactStrength, explores
the frequency of interactions between two users, and can be ap-
plied to data collected from both social networks (Twitter, in the
present case) and mobile phone calls. Specifically, we consider as
an interaction either a phone call or a retweet, and define the
strength of the contact between a pair of users u; and u, as fol-
lows. Let ninteractions;; ;; be the number of times user u;; inter-
acted with u;,, either by posting a retweet or by making/receiving a
call from/to u;,. Note that ninteractions;; ;; captures the total num-
ber of interactions between the two users, regardless of who ini-
tiated the call or posted the retweet. The strength of the contact
between u;; and u;, from the perspective of u;; is defined as the
fraction of all interactions of u;; which happened with uj;,. That
is
ContactStrengthy; ; = ninteractions i,

U]

13011341 NINEeractionsy 3

We consider that u;, is a contact of uy if ContactStrength;;
is equal to or greater than a given threshold 6. In Section 5, we
present an evaluation of the impact of the choice of 0 for predic-
tion accuracy.

Note that, unlike in the Follower-Followed strategy, the contact
links in the ContactStrength approach are not necessarily bidirec-
tional. That is, u;; may be considered a contact of u;; even if u;; is
not a contact of uj,.

4. Experimental setup

In this section, we present the datasets (Section 4.1) as well as
the methodology (Section 4.2) used in our experimental evaluation
of the human mobility prediction models.

4.1. Datasets

In our evaluation, we use three different datasets obtained from
multiple sources. The first dataset consists of data related to mo-
bile phone calls collected in different major cities in Brazil during
different periods of time. This dataset, referred to as MobilePhone-
BR, is further described in Section 4.1.1. The second dataset, re-
ferred to as Twitter-BR and detailed in Section 4.1.2, consists of
georeferenced tweets collected at the same locations and during
the same periods as the MobilePhone-BR dataset. Finally, our third
dataset consists of mobile phone calls collected in Mexico dur-
ing a one-month period. This dataset, described in Section 4.1.3,
is referred to as MobilePhone-MX. At the end of this section, we
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hy,=1 Wy 1=3x3=9

h1‘1=3

(a) Popularity of re-
gions and frequency of

transitions

(b) Computing the
edge weights

Wa2=5x1=5 wy,=0,14

(¢) Normalization of

edge weights

Fig. 1. Determining transition probabilities for MobHet-TP: an illustrative example.
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Fig. 2. Locations of the Antennas in Belo Horizonte city (MobilePhone-BR dataset).

discuss some filtering applied to the data and provide an overview

of all datasets (Section 4.1.4).

4.1.1. MobilePhone-BR dataset

Our first dataset, provided by a large Brazilian mobile phone
operator, is composed of information about mobile phone calls
made during pre-specified time periods in five major cities in
Brazil, namely Belo Horizonte (BH), Fortaleza, Recife, Rio de Janeiro
(R]), and Sdo Paulo (SP).

The data contains the following information for each call:

e Call id: unique identifier of the call;

e User id: unique identifier of the user who made the call
(anonymized);

o Start time: start time of the call;

e End time: end time of the call;

e Initial antenna: geographic coordinates (i.e., latitude and longi-
tude) of the antenna where the call was initiated;
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Fig. 3. Locations of the antennas in Mexico (MobilePhone-MX dataset).

e End antenna: geographic coordinates (i.e., latitude and longi-
tude) of the antenna where the call was finished.

For illustration purposes, Fig. 2 shows the locations of the an-
tennas in the city of Belo HorizonteS. An overview of the amount
of data available for each city is given in Section 4.1.4.

4.1.2. Twitter-BR dataset

The Twitter data consists of georeferenced tweets, ie., tweets
with geographic coordinates, collected using the Twitter Stream
API. This API allows real-time gathering of tweets with location fil-
tering, thus enabling the restriction of the collection area to a par-
ticular region. The collection of the Twitter dataset was planned
following the same locations and time periods on which the
MobilePhone-BR was gathered. Such locations and periods were
agreed upon with the mobile phone operator beforehand, prior to
the effective data gathering. Each registered tweet contains the fol-
lowing information:

o Tweet id: unique identifier of the tweet;

e User id: unique identifier of the user who posted the tweet
(anonymized);

Latitude: latitudinal geographic coordinate from where the user
posted the tweet;

Longitude: longitudinal geographic coordinate from where the
user posted the tweet;

o Time: timestamp of when the user posted the tweet;

Retweets: list of users (identified by their user ids) who posted
retweets of this tweet.

Besides that, for each user u;, we also collected

Followers: list of users (identified by their user ids) that
follow u;;

Followed: list of users (identified by their user ids) followed
by Uj.

8 The map was taken from the site Telebrasil: http://www.telebrasil.org.br/
panorama-do-setor/mapa-de-erbs-antenas.

Note that both the MobilePhone-BR and the Twitter-BR datasets
have been collected independently. Therefore, it is not possible to
identify the same user on these different data sources. In this way,
we consider both sets of users disjoint.

4.1.3. MobilePhone-MX dataset

In addition to the MobilePhone-BR and Twitter-BR datasets col-
lected in Brazil (see Section 4.1.1 and 4.1.2, respectively), we also
evaluated our prediction models using a mobile phone dataset
provided by Grandata®. This dataset consists of information about
phone calls made in 22,304 antennas spread over Mexico (Fig. 3)
during a one-month period (March 1st to 31st, 2014). The data is
anonymized and contains the following information for each call:

e Call id: unique identifier of the call;

e User id: unique identifier of the user who made the call

(anonymized);

Destination id: unique identifier of the user who received the

call (anonymized);

Start time: start time of the call;

o End time: end time of the call;

Initial antenna: geographic coordinates (i.e., latitude and longi-

tude) of the antenna where the call was initiated;

e End antenna: geographic coordinates (i.e., latitude and longi-
tude) of the antenna where the call was finished.

The single difference between the structure of the
MobilePhone-BR (Section 4.1.1) and the MobilePhone-MX datasets
is that in the latter the anonymized user id to whom the call was
destined is also known.

4.14. Filtering and resulting dataset sizes

We applied a filtering to all three datasets to remove users
who made only one call or posted only one tweet, since we could
not infer any mobility of such users from a single event (tweet
or call). Table 2 summarizes the resulting datasets collected in
Brazil (MobilePhone-BR and Twitter-BR) after the application of
this filtering. Each row shows the location (city) and the collection

9 http://www.grandata.com.
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Table 2
Individual collections that compose MobilePhone-BR and Twitter-BR datasets.
Brazilian city Date Time Calls Tweets
MM/DD/YYYY interval #Calls #Users #Tweets  #Users
Belo Horizonte (BH) 10/21/2011 13 h-21h 31.705 12.237 32.334 11.231
Belo Horizonte (BH) 12/31/2011 20 h-04 h 201.212 100.021 210.001 105.000
Belo Horizonte (BH) 01/03/2012 20 h-04 h 12.145 5.246 40.234 17.342
Belo Horizonte (BH) 02/03/2013 13 h-20 h 69.227 30.033 30.765 10.338
Belo Horizonte (BH) 03/10/2013 13 h-20 h 15.794 7.585 27.340 12.845
Belo Horizonte (BH) 03/02/2013 12 h-19 h 15.630 9.354 14.332 4.870
Belo Horizonte (BH) 06/22/2013 13 h-21 h 4.050 1.998 30.103 12.540
Belo Horizonte (BH)  06/26/2013 13h-21h 6.264 2.987 29.934 11.532
Belo Horizonte (BH) 09/11/2013 17 h-23 h 14.023 4.532 15.635 5.103
Fortaleza 06/29/2014 14 h-21 h 7.185 2.372 13.453 4.236
Recife 12/31/2011 20 h-04 h 21.123 10.000 45.321 20.192
Recife 01/03/2012 20 h-04 h 8.769 4.390 7.839 2.987
Recife 06/29/2014 14 h-21 h 13.335 4.923 13.577 3.981
Rio de Janeiro (R]) 08/28/2011 14h-20h  67.627  28.027  38.091 13.227
Rio de Janeiro (R]) 10/30/2011 14h-20h 58610 25593  37.931 12.498
Rio de Janeiro (R]) 12/04/2011 14 h-20 h 77.869 30.597 39.239 12.945
Rio de Janeiro (R]) 12/11/2011 14h-20h  56.159 23563 40123 13.002
Rio de Janeiro (R]) 12/31/2011 20h-04h 36354 13918 21.021 3211
Rio de Janeiro (R]) 01/03/2012 20 h-04 h 20.231 9.134 45.322 19.443
Rio de Janeiro (R]) 03/29/2012 18h-22h  31.166 12305  45.030 15.302
Rio de Janeiro (R]) 07/08/2012 14 h-20 h 7.579 3384 30213 13.490
Rio de Janeiro (R]) 11/27/2013 18 h-00 h 17.009 6.192 32.940 13.834
Rio de Janeiro (R]) 06/29/2014 14 h-21h 5120 1132 14.033 3.643
Rio de Janeiro (R]) 07/13/2014 14 h-21h 5.340 1.038 15.860 4572
S3o Paulo (SP) 02/04/2012 15 h-22 h 3.370 1159 25370 11.930
Sdo Paulo (SP) 11/25/2012 12 h-18 h 22.752 11.235 28.042 13.220
Sdo Paulo (SP) 03/24/2013 13 h-20 h 44.499 20.787 50.323 20.334
Total 874.147 383.742  974.406 392.848
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Fig. 4. Amount of calls/tweets per hour-Rio de Janeiro 06/29/14.

period, the number of calls and tweets as well as the respective
numbers of users in each dataset. In total, the datasets collected
in Brazil cover five major cities, 27 days, 874,147 calls made by
383,742 users, and 974,406 tweets posted by 392,848 users. The
filtered dataset from Mexico (MobilePhone-MX), in turn, consists
of a total of 9882,477 calls made by 3541,580 users throughout the
month of March, 2014.

4.2. Evaluation methodology

Before discussing our evaluation methodology, we argue that,
as one might expect, the volume of data (i.e.,, number of calls or
tweets) varies greatly over the day. This is illustrated in Fig. 4 for
one particular city (Rio de Janeiro) and period (June 29th, 2014) in
the MobilePhone-BR dataset. Thus, we decided to develop a predic-
tive model for every hour in order to more accurately capture the
underlying mobility patterns in different periods during the day. To
that end, we first divided each dataset into one-hour intervals.

Fig. 5. Separation of data into training and test sets (different days).

Next, we divided each dataset into training (D!™@"n8) and test
(D't sets. As argued in Section 2.1, such division should be made
provided that the following assumption holds: the training set,
where the prediction model is learned, covers time periods during
which the mobility patterns are similar to those present in the test
set, where the model is applied. The first approach is to use data
from multiple days (same day of the week but different weeks)
covering the same period of time. In that case, we could use the
data in one day for training, and the data in the same weekday,
one week later, for testing the model as illustrated in Fig. 5. For
this strategy we use the following datasets (MM/DD/YYYY is the
date format):

o Belo Horizonte 12/31/2011 and Belo Horizonte 01/03/2012;
» Belo Horizonte 02/03/2013 and Belo Horizonte 03/10/2013;
o Recife 12/31/2011 and Recife 01/03/2012;

e Rio de Janeiro 08/28/2011 and Rio de Janeiro 10/30/2011;
 Rio de Janeiro 12/04/2011 and Rio de Janeiro 12/11/2011;

e Rio de Janeiro 12/31/2011 and Rio de Janeiro 01/03/2012;
e Rio de Janeiro 06/29/2014 and Rio de Janeiro 07/13/2014;
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| t, | | t) | | t, | | t) | for which the prediction was correct. The only reason for having
the training data to precede the test data chronologically is that we
p——— A A A A want to simulate a realistic scenario where, at prediction time, we
mobility patterns |18005[ 13005\ 13005| 18005\ only have historical data collected over previous periods of time.
Day X
5. Experimental results
Predicting the . .
human mobility hBOOs[ 18005 heOOs\ haoos\ In this section, we turn to evaluate the new MobHet mod-
Day X Y Y Y Y els, comparing them with themselves and with the two baselines,
SMOOTH and Leap Graph. We start by comparing all MobHet vari-
| t | I i | | i | | i | ations, introduced in Section 3.1, with each other (Section 5.1).

Fig. 6. Separation of data into training and test sets (same day).

e Mexico 16 to 22 of March of 2014 and Mexico 23 to 29 of
March of 2014.

However, some collections in our Brazilian dataset do not cover
multiple days. Thus, we opted for a different strategy applying it to
all datasets. For each day, we further divided each one-hour inter-
val into two 30-minute periods: the former was used for training,
and the latter for testing, as illustrated in Fig. 6.

An important aspect of the evaluation is the definition of the
time window and time period. The time window captures the mo-
bility of users during the time period used in the datasets to train
and test the models. The time period, in contrast, is used to break
the timeline into intervals during which (we believe) human mo-
bility will be roughly stable. Since the time period of the collec-
tions are 30 min (for training and test at the same day) and 60
min (for training and test in different days), we decide to use time
windows of 5 and 10 min. Thus, we observe at least three steps for
periods of 30 min and six steps for the period of 60 min. Further,
we use a null model in which user u; located in a region r; at time
t, remains in the same region at time f;_ ;.

For each of the datasets collected in Brazil, we evaluated each
mobility prediction model in scenarios that are based on only mo-
bile phone calls, only tweets, and on both mobile phone calls and
tweets simultaneously. The purpose of the latter scenario is to
evaluate the performance of the models when configured to use
heterogeneous data sources together. The best approach to com-
bine data from heterogeneous sources is not obvious because dif-
ferent models may have different relative performances depending
on the input data. Thus, we consider and evaluate two strategies
to combine mobile phone calls and tweets:

o Association of tweets to mobile phone calls: each tweet is asso-
ciated with the nearest cell antenna to the tweet geolocation;

o Association of mobile phone calls to tweets: each antenna in
the mobile phone call dataset is considered a point (as is each
tweet) in the simulation region.

Note that in both cases, we are not able to infer user contacts
from the combined data as this information is not available on
the mobile phone calls. Thus, when using heterogeneous data, we
only evaluate the MobHet variation that does not exploit contacts
(MobHet-TP).

As explained in Section 2.1, 2.3 and 3.1, we used the same def-
inition for regions for the sake of comparability. Additionally, we
defined the simulated area of the Brazilian datasets as the geo-
graphic region of the city where each dataset was collected. For the
Mexican dataset, we used the geographic area of the country as in-
put to simulation. In all cases, we consider the distance d defining
each region as equivalent to 500 m, which is the typical coverage
radius of an antenna. This value was chosen so that the results of
the various scenarios are comparable.

Finally, we evaluated the prediction accuracy for all models, that
is defined as the fraction of tuples < u;, rj, t; > in the test set D'

Next, we analyze different scenarios for our model (Section 5.2).
Finally, we compare our best MobHet models with the two base-
lines (Section 5.3).

5.1. Accuracy of the MobHet models

The five variations of MobHet model differ in terms of the three
basic features—region popularity, frequency of transitions between
regions, and user contacts—used to compute the weights of the
edges of the region transition graph G. In this section, we focus
on comparing these five variations, namely, MobHet-C, MobHet-TP,
MobHet-TC, MobHet-PC, and MobHet-TPC, verifying their respec-
tive prediction accuracy. Here, we evaluate the models using only
the datasets Twitter-BR and MobilePhone-MX because as afore-
mentioned we cannot infer user contacts from the MobilePhone-BR
dataset. We use this latter dataset for comparing our best model
with the baselines.

For the Twitter-BR dataset, we apply two strategies to identify
user contacts, namely Follower-Followed and ContactStrength (de-
scribed in Section 3.2), while for the MobilePhone-MX dataset we
only use the ContactStrength strategy. For both datasets, we eval-
uate all models that use contacts the following values of 6 (the
ContactStrength threshold): 10%, 15%, 20%, 25%, 50%, and 75%. For
these models, we initially fix the value of m, the minimum number
of contacts considered, at 1, deferring the evaluation of the impact
of this parameter to the end of this section.

Table 3 shows the average prediction accuracy (along with 95%
confidence intervals) of each of the five proposed MobHet models
and various contact definition strategies'?. The table shows results
for one single city and time period of the Twitter-BR dataset (Rio
de Janeiro, 06/29/2014 with time window of 5 min and training
and test at the same day). We omitted the results for other peri-
ods/cities because they are very similar. Best results (and statistical
ties) for each dataset and model are shown in bold, whereas the
overall best result for each dataset is marked with a “*”.

Overall, the best results are produced by MobHet-TPC. This
shows the importance of considering all three features jointly to
predict human mobility. The worst approach is the one that uses
only contacts: MobHet-C produces results that are as much as
48% (Twitter-BR) and 24% (MobilePhone-MX) worse than MobHet-
TPC, besides not being applicable to users with no contacts in
the dataset. Next, using both contacts and frequency of transitions
between regions (MobHet-TC) or region popularity (MobHet-PC)
greatly improves over using only the former. Yet, both approaches
are still worse than MobHet-TPC. Finally, it is interesting to note
that using both region popularity and frequency of transitions
(MobHet-TP) improves over using only contacts (up to 59% and
32% for Twitter-BR and MobilePhone-MX datasets, respectively).
Yet, this approach is still much worse than MobHet-TC, MobHet-
PC and MobHet-TPC, which indicates the importance of taking the
user contacts into account when predicting mobility, consistently

10 Each model was replicated 50 times for all experiments present in the
Section 5.
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= 1). Best results (and statistical ties) for

MobHet-TPC

MobHet-TP

0.513 + 0.0176
0.567 + 0.0182
0.594 + 0.0180
0.632 + 0.0174
0.653 + 0.0177
0.653 + 0.0162
0.621 + 0.0149

0.613 + 0.0193
0.626 + 0.0182
0.642 + 0.0190
0.663 + 0.0198
0.652 + 0.0203
0.583 + 0.0215

0.559 + 0.0185
0.625 + 0.0195
0.640 + 0.0190
0.654 + 0.0184
0.678 + 0.0193*
0.684 + 0.0197*
0.631 £+ 0.0192

MobHet-TPC
0.630 + 0.0201
0.649 + 0.0213
0.668 + 0.0210
0.692 + 0.0172*
0.683 + 0.0168*
0.618 + 0.0178

0.545 + 0.0211

MobHet-TP

1

0.619 + 0.0153
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Table 3
Average precision (along with 95% confidence intervals) of all MobHet models (m
each method are shown in bold. Overall best results are marked with “*”.
Twitter-BR Dataset (Rio de Janeiro, 06/29/2014)
Contact definition MobHet-C MobHet-TC MobHet-PC
Follower-Followed 0.342 + 0.0194 0.505 + 0.0135
6 =10%  0.365 + 0.0175 0.540 + 0.0142
6 =15%  0.373 £ 0.0170 0.560 + 0.0147
Contact 6 =20% 0.383 £ 0.0195 0.595 + 0.0151
Strength 6 =25% 0409 + 0.0149  0.620 + 0.0169
6 =50% 0420 + 0.0159 0.630 * 0.0173
0 =75% 0394 + 0.0184 0.612 + 0.0163
None
MobilePhone-MX Dataset
Contact definition MobHet-C MobHet-TC MobHet-PC
0 =10% 0493 £ 0.0232  0.593 £ 0.0191
6 =15%  0.509 + 0.0222  0.602 + 0.0195
Contact 6 =20% 0.524 + 0.0214 0.623 + 0.0180
Strength 0 = 25%  0.544 + 0.0230  0.641 + 0.0198
6 =50% 0.532 + 0.0218 0.638 + 0.0208
6 =75% 0.468 + 0.0212 0.575 + 0.0212
None
Table 4
Number of users in D@ning 35 we vary parameter 6 of ContactStrength
approach.
DataSet
ContactStrength ~ Twitter-BR MobilePhone-MX
(Rio de Janeiro on 06/29/2014)
6 = 10% 692 1332,480
6 = 15% 621 1265,381
6 =20% 553 1203,072
6 = 25% 400 1032,182
6 = 50% 392 1005,387
6 = 75% 78 232,321

with previous studies [13,16]. As an example, the improvements of
MobHet-TPC over MobHet-TP vary from 3% to 26% on the Twitter-
BR dataset, and from 2% to 12% on the MobilePhone-MX dataset,
depending on the specific strategy employed to infer user contacts.

Regarding these strategies, we note that exploiting the strength
of the contacts is much better (up to 27%) than using the follower
and followee links on Twitter. This is not surprising, as the latter
captures a weaker relationship between the two users, and thus,
reflects potentially less influence of one user on the other. Interest-
ingly, we find that consistently for all methods and both datasets,
the best results obtained with the ContactStrength approach are
produced for 0 equal to either 25% or 50%. Smaller values of 6 lead
to less conservative contact strategies, less accurate contact infer-
ences, and, ultimately, less accurate predictions. As the value of 6
increases, the inferences become more reliable and prediction ac-
curacy improves. Yet, very large values of 6 (e.g., 8 = 75%) impose
serious constraints on the size of the training set, as the number
of users who have enough contacts in D@18 is reduced.

The reduction on the amount of data from which the model is
learned impacts its ability to generalize, ultimately hurting its ac-
curacy on the test set. As shown in Table 4, the number of unique
users in the training set decreases as 6 increases on both datasets.
However, the reduction is quite sharp when 6 goes from 50% to
75%, which may cause the drop in performance of the MobHet
models.

The results discussed above were obtained fixing the value
of parameter m, the minimum number of contacts considered to
compute probability P(L; j,,(|ijr"k), at 1. We now investigate the im-
pact of varying m on the results, focusing on our best MobHet

model, i.e.,, MobHet-TPC. Considering the two strategies used to de-
fine the contacts of a user-ContactStrength and Follower-Followed,
we were able to find users with up to three contacts in the training
sets of both datasets. Thus, we experiment with m equal to 1, 2 and
3. The results are shown in Table 5 for the same datasets and con-
tact strategies analyzed in Table 3. Note that, as we increase m, the
maximum possible value of 6 used by the ContactStrength strategy
decreases: for m = 2, the maximum value of 6 is 50%, since this
threshold requires that a user must participate in at least half of
all interactions (retweets or calls) of u; to be u;’s contact. Simi-
larly, a user may have at most one contact when 6 = 75%.

Table 5 shows that the best results are obtained with m =1,
implying that, when exploiting the contacts of a user to predict the
user’s future location, it is better to be less restrictive, and con-
sider even a single contact to perform such inference. The accu-
racy improvements over stricter policies that consider more con-
tacts (m =2, 3) can be as high as 11%. Moreover, stricter policies
may also have a smaller applicability, as there may be fewer users
who are candidates for prediction (i.e., users who have at least m
contacts). As discussed in Section 3.1, we must revert to a simpler
MobHet variation that does not exploit contacts to be able to pre-
dict the mobility of such users. As a final note, Table 5 also shows
that, for all values of m, the best results are always obtained when
the ContactStrength strategy with 6 equal to 25% or 50% is used to
define the contacts, for the reasons discussed above.

5.2. Evaluation of MobHet in other scenarios

As explained in Section 4.2, in addition to using time periods
of 60 min with training and testing on the same day with a time
window of 5 min, we also evaluate the MobHet models by vary-
ing the time window to 10 min and with training and testing on
different days.

Table 6 shows the prediction accuracy for the Twitter-BR
dataset of Rio de Janeiro on 06/29/2014 and 07/13/2014 as well as
the MobilePhone-MX dataset of 03/16/2014 calls and 03/23/2014 in
different scenarios. For the scenarios presented in the Table 6, with
training and testing on the same day, we use the collection of Rio
de Janeiro 06/29/2014 and Mexico 03/16/2014. For results of train-
ing and test in different days, we used the dataset of Rio de Janeiro
06/29/2014 for training and 07/13/2014 for testing, and the dataset
of Mexico 03/16/2014 for training and 03/23/2014 for testing.

As similar results were obtained for other datasets, we focus
our analysis only on the datasets presented in Table 6. Analyzing
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Impact of parameter m, minimum number of contacts used to compute probability P(L; ;|C7f,), on MobHet-TPC performance.

ij.

Best results for each value of m are shown in bold. Overall best results are marked with “*”.

Twitter-BR dataset (Rio de Janeiro, 06/29/2014)

Contact definition

m=1

m=2 m=3

Follower-Followed

ContactStrength

6 = 10%
6 = 15%
0= 20%
6 = 25%
6 = 50%
6 =75%

Contact definition

ContactStrength

6 = 10%
6 = 15%
6 = 20%
6 = 25%
6 = 50%
6 =75%

0.559 + 0.0185
0.625 + 0.0195
0.640 + 0.0190
0.654 + 0.0184
0.678 + 0.0193*
0.684 + 0.0197*

0.575 + 0.0137
0.621 + 0.0132
0.621 + 0.0132
0.621 + 0.0132
0.657 + 0.0135
0.645 + 0.0142

0.536 + 0.0141
0.613 £ 0.0132
0.613 + 0.0132
0.613 + 0.0132
0.624 + 0.0142

0.631 £+ 0.0192
MobilePhone-MX dataset

m=1

0.630 + 0.0201
0.649 + 0.0213
0.668 + 0.0210
0.692 + 0.0172*
0.683 + 0.0168*

m=3

0.613 £ 0.0132
0.613 + 0.0132
0.613 £ 0.0132
0.624 + 0.0142

m=2

0.621 + 0.0132
0.621 + 0.0132
0.621 + 0.0132
0.657 + 0.0135
0.645 + 0.0142

0.618 + 0.0178

Table 6

Average precision (along with 95% confidence intervals) of all MobHet models (m = 1) for the different scenarios. Best results (and statistical ties) for each method
are shown in bold. Overall best results are marked with “*”.

Twitter-BR dataset - Rio de Janeiro

ty (min) ~ ptraining prest MobHet-C (0 = 25%)  MobHet-TC (0 = 25%)  MobHet-PC (6 = 25%)  MobHet-TPC (6 = 25%)  MobHet-TP
5 06/29/2014  06/29/2014  0.409 + 0.0149 0.620 + 0.0169 0.653 + 0.0177 0.678 + 0.0193* 0.545 + 0.0211
10 06/29/2014  06/29/2014  0.354 + 0.0155 0.580 + 0.0155 0.612 £ 0.0144 0.631 + 0.0172 0.512 + 0.0180
5 06/29/2014  07/13/2014  0.414 + 0.0152 0.625 + 0.0171 0.654 + 0.0180 0.682 + 0.0180* 0.555 + 0.0202
10 06/29/2014  07/13/2014 0359 + 0.0146 0.585 + 0.0168 0.618 + 0.0167 0.634 £ 0.0171 0.515 + 0.0195
MobilePhone-MX dataset - Mexico
ty (min) ~ ptraining prest MobHet-C(6 = 25%) MobHet-TC(6 = 25%) MobHet-PC(6 = 25%) MobHet-TPC(6 = 25%) MobHet-TP
5 03/16/2014  03/16/2014  0.542 + 0.0230 0.643 + 0.0198 0.663 + 0.0198 0.690 + 0.0172* 0.618 + 0.0153
10 03/16/2014  03/16/2014  0.501 + 0.0245 0.611 + 0.0177 0.628 + 0.0208 0.665 + 0.0181 0.575 + 0.0162
5 03/16/2014  03/23/2014  0.545 + 0.0220 0.645 + 0.0190 0.667 + 0.0191 0.694 + 0.0170* 0.619 + 0.0165
5 03/16/2014  03/23/2014  0.507 + 0.0240 0.615 + 0.0200 0.633 + 0.0196 0.667 £ 0.0190 0.580 + 0.0170
Table 7

Average precision (along with 95% confidence intervals) of MobHet-TPC (m = 1) and Null Model for the different scenarios. Best
results (and statistical ties) for each method are shown in bold. Overall best results are marked with “*”.

Twitter-BR dataset - Rio de Janeiro

t, (min) ptraining plest MobHet-TPC (6 = 25%) Null Model

5 06/29/2014 06/29/2014 0.678 + 0.0193* 0.225 + 0.0250
10 06/29/2014 06/29/2014 0.631 + 0.0172 0.212 + 0.0235
5 06/29/2014 07/13/2014 0.682 + 0.0180* 0.222 + 0.0248
10 06/29/2014 07/13/2014 0.634 + 0.0171 0.209 + 0.0253

MobilePhone-MX dataset - Mexico

t (min) ptraining prest MobHet-TPC (6=25%) Null Model

5 03/16/2014 03/16/2014 0.690 + 0.0172* 0.242 + 0.0251
10 03/16/2014 03/16/2014 0.665 + 0.0181 0.235 + 0.0241
5 03/16/2014 03/23/2014 0.694 + 0.0170* 0.238 + 0.0250
10 03/16/2014 03/23/2014 0.667 + 0.0190 0.232 + 0.0255

the difference among these scenarios, we observe that scenarios
with smaller time windows (5 min) have a prediction accuracy,
on average, 4% higher than the scenarios with larger time window
(10 min). We observe that with a larger time windows for a small
period of simulation time (in our case, 60 min), we could fail to
capture some users’ transitions between regions and, consequently,
compromising the prediction accuraty of MobHet.

Beside the evaluation for different scenarios, we compared our
models with a Null model. The Table 7 shows the result of our best
model, MobHet-TPC, and the results of the Null model for the same
scenarios present in Table 6. The MobHet-TPC have, on average, a
precision accuracy of 201% higher than the Null model, confirming
the existence of human mobility in our datasets.

As in our experiments about training and test in different days
we did not note no significant difference when compared with the
training and test in the same day, we decided to compare our Mob-
Het models with the baselines models, SMOOTH and Leap Graph
(in Section 5.3) using the best scenario: training and testing on the
same day with the time window of 5 min.

5.3. Comparison of MobHet with baseline models

After comparing our new MobHet models among each other,
we now compare them with the two baselines, SMOOTH and Leap
Graph. We include in such comparison our best MobHet model, the
MobHet-TPC, as well as the MobHet variation that, like the two

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.04.013

Please cite this article as: L.M. Silveira et al., MobHet: Predicting human mobility using heterogeneous data sources, Computer Commu-



http://dx.doi.org/10.1016/j.comcom.2016.04.013

JID: COMCOM

[m5G;May 3, 2016;14:39]

LM. Silveira et al./Computer Communications 000 (2016) 1-15 13
1.0,
> [saSMOOTH mmLeap Graph eeMobHet-TP|
Cos L .
O ] ™ ] ®
g ] .. ....'.....l'-' .l ...
C
S0
4
=~
fe)
Qo4 A A P Ad 445
o A A A % A i & A A
() A A A A
o 4 LAY
©o.2
2
3
00 S 8 0 0 9 0 00 OfSefs8e. § B 8 8 8 S oS oo asn
R = e e e e e T L R ERE
S22 958 88 gps53=g £ 3 358 83853 58488
Data Collection
(a) Only calls as input (MobilePhone-BR dataset)
10
- SMOOTH eeMobHet-TP «xMobHet-TPC
o Leap Graph
Sos8 * : * %
1= * % *
[v] * * % *
< + & ¥ F * % ¥ & * * ¥
% * * &k %
80.6 PP ® ® ® ® ® ° ® 2
= ° ie
B idaQ ;l"lsésl‘lfni"Axlxx
° LI s " " g eagunns
D04 ] ] N ] u ] ]
a san® " u - -
]
()]
©o0.2
2
<
00 9 98 9 A8 o@mAer o 9,.% oo o083 08Es8g0
S 288 88 88 2e8°8°3:5 8 g 9883852885838
Data Collection
(b) Only tweets as input (Twitter-BR dataset)
1.0,
> [aASMOOTH mmleap Graph e@eMobHet-TP|
©
5038 (] g
O geae [ ] ae o ] : ]
g s By,egv,5%00 ve 'y 8
5
g
©
D04 P A A A b, a3,
o A A A i A b i A 4 A
[J] A A A
o a i A A
© o2
2
<
0.0

BH
12/31/11
BH
01/03/12
BH
10/21/12]
BH
02/03/13;
BH
03/02/13
BH
03/10/13;
BH
06/22/13;
BH
06/26/13;
BH
09/11/13;
Fortaleza
06/29/14

Re
12/.
R
01/

Data C

06/29/14
RJ
28/11

O os/

RJ
12/11/11
R
12/31/11!
RJ
01/03/12!
R/
03/29/12!
R
07/08/12!
R
11/27/13
RJ
06/29/14
RJ
07/13/14
SP
02/04/12!
sp
11/25/12
SP
03/24/13/

llection

(c) Both calls and tweets, associating tweets to calls (both datasets)

Fig. 7. Average prediction accuracy of our best MobHet models and baselines on all Brazilian datasets (Twitter-BR and MobilePhone-BR)—Training and test on the same day

and time window of 5 min.

baselines, does not exploit user contacts, the MobHet-TP. For the
former, we set m =1 and focus on the contact definition that pro-
duces the best results, that is, ContactStrength with 6 equal to 25%
and 50%.

Table 8 shows average prediction accuracy (along with 95%
confidence intervals) for all models and the three datasets, con-
sidering scenarios in which only calls are used (MobilePhone-BR
and MobilePhone-MX datasets), only tweets are used (Twitter-BR
dataset) as well as both types of data are used (MobilePhone-
BR and Twitter-BR datasets). For the latter, we consider both ap-
proaches to combine the data discussed in Section 4.2: associa-

tion of tweets to calls and association of calls to tweets. For both
MobilePhone-BR and Twitter-BR datasets, we present results for a
single city and period to improve the readability of the table. We
will discuss the results for the other cities and periods, which are
very similar, later in this section.

Concerning the baselines, we note that both SMOOTH and Leap
Graph produce the best results when using the homogeneous data
source for which the model was originally proposed (or evaluated).
That is, Leap Graph achieves its best prediction accuracy when us-
ing only phone calls, while SMOOTH'’s best results are obtained
when using only tweets. Specifically, by looking at the results
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Table 8

Comparison of best MobHet models against baselines: average prediction accuracy and 95% confidence

interval. Best results for each scenario in bold.

MobilePhone-BR and Twitter-BR datasets

Rio de Janeiro, 06/29/2014

Models Calls Tweets Tweets to calls Calls to tweets
SMOOTH 0.368 + 0.0177  0.521 + 0.0189 0.481 + 0.0193  0.516 + 0.0189
Leap Graph 0.788 + 0.0178  0.451 + 0.0195 0.745 + 0.0187  0.422 + 0.0189
MobHet-TP 0.799 + 0.0192  0.545 + 0.0211 0.744 + 0.0186  0.531 + 0.0164

MobHet-TPC (6 = 25%)
MobHet-TPC (6 = 50%)

0.678 + 0.0193
0.684 + 0.0197

MobilePhone-MX dataset

Models Calls

SMOOTH 0.345 + 0.0221
Leap Graph 0.613 + 0.0199
MobHet-TP 0.619 + 0.0153

MobHet-TPC (6 = 25%)
MobHet-TPC (6 = 50%)

0.692 + 0.0172
0.683 + 0.0168

Tweets

Tweets to calls Calls to tweets

produced for the Brazilian datasets (MobilePhone-BR and Twitter-
BR), we note a performance degradation of 43% for Leap Graph
and 29% for SMOOTH if a different type of data (though still
homogeneous) is used. As for the scenarios with heterogeneous
data sources, the prediction accuracy of each model was some-
what worse that its best results. Thus, we observe that the per-
formance of both baseline is very dependent on the type of data
used as input, and suffers some degradation when heterogeneous
data sources are used as input.

In contrast, MobHet-TP, our model that, like the two baselines
does not exploit user contacts, has a performance that is at least
as good as (if not better than) that of the best baseline in all sce-
narios. For example, we note that MobHet-TP has an average pre-
diction accuracy that is slightly better than that of Leap Graph, but
much higher (117% in MobilePhone-BR and 80% in MobilePhone-
MX datasets) than SMOOTH in the scenarios with only calls as
data source. If only tweets are used as input data, MobHet-TP out-
performs Leap Graph by 21%, producing results similar to those
of SMOOTH (Twitter-BR dataset). Note that MobHet-TP results are
much better when only calls as used, compared to when tweets
are used. The reason for that is a much larger number of distinct
regions which are present only in the test set (but not in the train-
ing set) of the Twitter-BR dataset. The model is not able to predict
a movement towards a region that did not appear in the training
set, since this region is not included in transition graph G.

In the scenario with heterogeneous data sources (Brazilian
datasets), MobHet-TP features a performance slightly worse when
compared with the scenarios with a single homogeneous data
source, but still higher on average than that of the baselines. As
to the two strategies to combine the data sources, we note that all
models perform between when the association targets the type of
data for which the model has higher accuracy (e.g., calls for Leap
Graph and MobHet-TP, tweets for SMOOTH).

The introduction of user contacts into MobHet produces further
improvements over both baselines. For example, in the Twitter-
BR dataset, our best MobHet-TPC model outperforms SMOOTH
by 31% and Leap Graph by 52%. In the MobilePhone-MX dataset,
the improvements are 90% and 13% respectively. Indeed, by cross-
referencing Table 3 and 8, we note that even when the less effec-
tive contact definition (Follower-Followed on Twitter-BR, and Con-
tactStrength with 0 = 75% on MobilePhone-MX) already produces
improvements over both baselines.

Although the results shown in Table 8 for the Brazilian datasets
are for a single city and time period, the same relative performance
of all methods was observed for all 27 individual collections that
compose those datasets (see Table 2). This is illustrated in Fig. 7(a-

¢) for three scenarios, two with homogeneous data and one with
heterogeneous data sources and with time window of 5 min and
training and test at the same day. Overall, when using only calls
as input data (Fig. 7(a)), MobHet-TP produces accuracy improve-
ments of 6% and 114% over Leap Graph and SMOOTH, respectively,
on average. When using only tweets as input (Fig. 7(b) ), our best
model—MobHet-TPC with 6 = 50% produce average improvements
of 71% and 33%, respectively. In the scenario with heterogeneous
data (Fig. 7(c) ), the improvements are still quite noticeable, reach-
ing, on average, 110% over SMOOTH, and 4% over Leap Graph.

6. Conclusion and future work

We have proposed MobHet, a new family of models to pre-
dict human mobility from heterogeneous data sources. The Mob-
Het models exploit a subset of the popularity of different regions
in a target area, the frequency at which people moves between
different regions as well as the relationships (or contacts) among
people. We evaluated our proposed models, comparing them with
themselves and with two baseline solutions from the literature,
in various scenarios, with homogeneous and heterogeneous data,
built from large real-world datasets of mobile phone calls and
tweets. Our experiments indicate that neither baseline outperforms
the other in all scenarios, demonstrating their sensitivity to the
type of input data. In contrast, our MobHet models are at least as
good as, if not much better than, the best baseline in all scenar-
ios. Moreover, for all scenarios with a varied set of parameters, we
find that all three features—region popularity, frequency of transi-
tion between regions and user contacts—are important to mobility
prediction, since leaving any of them out causes loss of prediction
accuracy. Regarding specifically the definition of user contacts, our
results show that less restrictive strategies may lead to very unreli-
able contact inferences, ultimately hurting prediction. On the other
extreme, very strict contact inferences may excessively constraint
the size of the training set, which in turn also hurts model gener-
ality and accuracy.

This work opens up many perspectives for future work building
upon our current models. For example, we intend to further inves-
tigate other alternatives to define user contacts, possibly exploiting
temporal and spatial information. In that direction, one could en-
vision different classes of contacts, such as those that a user often
meet at daytime and those whose interaction occur more ofter at
nighttime. Another direction we plan to pursue in the future re-
lates to the division of the target area into a set of regions. In-
stead of taking a uniform division (as performed here), we intend
to explore approaches that take sociocultural, demographic, and/or
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administrative aspects into account. For example, one alternative
approach would be to break the target area of a city into city dis-
tricts. Another example is to use other features connected to the
user, like his/her historical record to predict the location. Mobil-
ity prediction in such scenario could provide valuable insights into
more effective policies for city planning. Finally, we also intend to
explore other mobility prediction tasks. For example, we intend to
develop models to predict the volume of people who will be at a
certain region in a target time period.
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