
Inferring Personal Economic Status from Social Network Location

Shaojun Luo1, Flaviano Morone1, Carlos Sarraute2,

Mat́ıas Travizano2 and Hernán A. Makse1†

1Levich Institute and Physics Department,

City College of New York, New York, NY 10031 USA

2Grandata Labs, 550 15th Street, San Francisco, CA 94103 USA

† Corresponding author: hmakse@lev.ccny.cuny.edu

Abstract

It is commonly believed that patterns of social ties affect individuals’ economic sta-

tus. Here, we translate this concept into an operational definition at the network level,

which allows us to infer the economic wellbeing of individuals through a measure of

their location and influence in the social network. We analyze two large-scale sources:

telecommunications and financial data of a whole country’s population. Our results

show that an individual’s location, measured as the optimal collective influence to

the structural integrity of the social network, is highly correlated with personal eco-

nomic status. The observed social network patterns of influence mimics the patterns

of economic inequality. For pragmatic use and validation, we carry out a marketing

campaign that shows a three-fold increase in response rate by targeting individu-

als identified by our social network metrics as compared to random targeting. Our

strategy can also be useful in maximizing the effects of large-scale economic stimulus

policies.
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Introduction

The long-standing problem of how the network of social contacts [1–3] influences the

economic status of individuals has drawn large attention due to its importance in a diversity

of socio-economic issues ranging from policy to marketing [1, 4, 7, 13]. Theoretical analyses

have pointed to the importance of the social network in economic life [13] as a medium

to diffuse ideas [8, 9] through the effects of “structural holes” [10] and “weak ties” in the

network [4]. Likewise, research has recognized the positive economic effect of expanding

an individual’s contacts outside their own tightly connected social group [1, 11–13]. While

previous work has established the importance of social network influence to economic status,

the problem of how to quantify such correspondence via social network centralities or metrics

[3, 4] remains open.

Studies employing mobile phone communication data and other social indicators have

found a variety of network effects on socio-economic indicators such as job opportunities

[15, 16], social mobility [17–19], economic development [1, 20–22] and consumer behavior

[23, 24]. Recent work also provides evidence of such effects on an individual’s wealth, and

highlights the need for better indicators [25]. Recently, a numerical study has tested the

effect of network diversity on economic development [1]. This study analyzed economic

development defined at the community level. However, the question of how social network

metrics may be used to infer financial status at the individual level—necessary, for instance,

for micro-target marketing or social intervention campaigns—still remains unanswered. The

difficulty arises, in part, due to the lack of empirical data combining an individual’s financial

information with the pattern of their social ties at the large-scale network level of the whole

society.

In this work, we address this problem directly by combining two massively-large datasets:

a social network of the whole population of a Latin American country and financial banking

data at the individual level. We discover that the optimal location of an individual in the

network, which is measured by the collective influence metric (CI) [7], is highly correlated

with the individual’s economic status at the population level: the larger the collective in-

fluence, the higher the socio-economic level. The goodness of fit of this correlation can be

as high as R2 = 0.99 when age is also included. These results indicate that the optimal

location in the social network measured by the collective influence metric can accurately

predict socio-economic indicators at the personal level.
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The top 1% of the economic stratum has precise network patterns of ties formation

showing relatively low local connectivity surrounded by a hierarchy of hubs strategically

located in spheres of influence of increasing size in the network. Such a pattern is not

observed in the rest of the population, in particular, in the bottom 10% characterized by

low values of collective influence. Thus, the influence measured from social network patterns

mimics the inequality observed in economic status [27].

We also find a high correlation between the link diversity of individuals and their financial

status (R2 = 0.96) employing the analysis based on network location and age. Analysis of

the covariance suggests that the effect of network influence is significant and independent

from other factors. We validate these results by carrying out a targeted marketing campaign

in which we compare the response rate for different groups of people with different network

locations. By targeting the group with the top collective influence values, the response rate

can reach as high as 1%; approximately three times the response rate found by random

targeting and five times the response rate of the low collective influence people.

Thus, individuals with high socio-economic status (top 1%) develop a very characteristic

pattern of social ties as compared to the bottom 10%. While this result may be expected, it

is remarkable that the difference in pattern of social interactions between the rich and the

poor can be precisely captured by a network metric measuring their collective influence in

the social network [7]. The top socio-economic layer of society also represents the minimal

set of people that provides integrity to the whole social network through their large collective

influence. The fact that individuals of higher economic status are located in regions of large

collective influence in the network elevates previous anecdotal evidence to a principle of

network organization through the optimization of influence of affluent people affecting the

structural integrity of the social network. At the same time, it suggests the emergence of

the phenomenon of collective influence in society as the result of the local optimization of

socio-economic interactions.

Results

Network Construction

The social network is constructed from mobile (calls and SMS metadata) and residential

communications data collected for a period of 122 days (Supplementary Note 1, aggregated

data at kcorelab.com). The database contains 1.10×108 phone users. After filtering the
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non-human active nodes by a machine-learned model trained on human natural communi-

cation behavior (Supplementary Note 2 , with Supplementary Figures 1 – 4), we construct

a final network of 1.07×108 nodes in a giant connected component made of 2.46×108 links.

The ties, or links, in the network correspond to phone call communications, since we expect

that communication patterns are indicative of an individual’s location in the social network

[2, 29, 30]. The financial cost of using phone services makes it possible that there is a

systematic bias in how much wealthy individuals use the phone services relative to people

that have less money to spend on phone calls. Although the effect might be limited (see

Supplementary Note 1), we cannot rule out this possibility with the present data.

Financial status is obtained from the combined credit limit on credit cards assigned by

banking institutions to each client. The credit limit is based on composite factors of income

and credit history and therefore reflects the financial status of the individual (see discussion

in Supplementary Note 1). The credit limit is pulled from an encrypted bank database and

identified by the encrypted clients’ phone numbers registered in the bank. Thus, we are

able to precisely cross-correlate the financial information of an individual with their social

location in the phone call network at the country level. There are 5.02×105 bank clients

who have been identified in the mobile network whose credit limit ranges from USD $50 to

$3.5×105 (converted from the country of study). Thus, the datasets are precisely connected

providing an unprecedented opportunity to test the correlation between network location

and financial status.

Despite the large scale of our data source, we note that working on a single specific country

as in the present study is not enough to grant generality to our results. In order to test

the general validity of the present results, access to other countries’whole-population-level

communication and banking datasets would be needed. As more datasets become available,

the generality of our results can be tested across different economic and social systems.

Figures 1a and 1b show the communication patterns geolocalized across the country of

individuals in the top 1% and bottom 10% of credit limits, respectively. The inequality in

the patterns of communication between the top economic class and the lowest is striking

and mimics the economic inequality at the country level [27]. It is visually apparent that

the top 1% (accounting for 45.2% of the total credit in the country) displays a completely

different pattern of communication than the bottom 10%; the former is characterized by

more active and diverse links, especially connecting remote locations and communicating

4



with other equally affluent people. Further results using entropy analysis also suggest that

the network structure may be significantly different between the people in the top and

bottom quantile rankings of credit limit (Supplementary Note 3 and Supplementary Table

1). Particular examples of the extended ego-networks for two individuals (with same number

of ties) ranking in the top 1% and bottom 10% provide a zoomed in picture of such differences

(Figs. 1c and 1d, respectively). The wealthiest 1-percenters have higher diversity in mobile

contacts and are centrally located, surrounded by other highly connected people (network

hubs). On the other hand, the poorest individuals have low contact diversity and are weakly

connected to fewer hubs. The crux of the matter is to find a reliable social network metric

to quantify this visual difference in the patterns of network structure between the rich and

the poor, as we show next.

Network Influence and Financial Status

Many metrics or centralities have been considered to characterize the influence or im-

portance of nodes in a network [3, 4, 31]. Here, we consider only those centralities that

can be scaled up to the large network size considered here (Figs. 1e, 1f and Supplementary

Note 4): (a) degree centrality ki (number of ties of individual i) is one of the simplest [3],

(b) PageRank, of Google fame [6], is an eigenvector centrality that includes the importance

of not only the degree, but also the nearest neighbors, (c) the k-shell index ks of a node

(Fig. 1e), i.e., the location of the shell obtained by iteratively pruning all nodes with degree

k ≤ ks [5], and (d) the collective influence of a node with degree ki (Fig. 1f) in a sphere

of influence of size ` defined by the frontier of the influence ball ∂Ball(i, `), and predicted

to be CI = (ki − 1)
∑

j∈∂Ball(i,`) (kj − 1) by optimal percolation theory [7]. As opposed to

the other heuristic centralities, CI is derived from the theory of maximization of influence in

the network [8]. The top CI nodes are thus identified as top influencers or superspreaders of

information, and they do so by positioning themselves at strategic locations at the center of

spheres surrounded by hubs hierarchically placed at distances ` (Fig. 1d). These collective

influencers also constitute an optimal set that provides integrity to the social fabric: they

are the smallest number of people that, upon leaving the network (a process mathematically

known as optimal percolation [7]), would disintegrate the network into small disconnected

pieces.

By definition, all of the metrics have similarities (e.g., they are proportional to k, and

PageRank and CI are based on the largest eigenvalues of the adjacency and non-backtracking
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matrices, respectively [7]), and indeed, we find that their values in the phone communica-

tions network are correlated (Supplementary Table 2). More interestingly, Fig. 2 provides

evidence of correlation of the four network metrics with financial status (ranked credit limit)

when we control for age, indicating that the network location correlates with financial sta-

tus. In this figure, we plot the fraction of wealthy individuals (defined as top 4th quantile,

equivalent to a credit limit greater than USD $4,000; see Supplementary Note 5 for details

about validation methods and [30]) in a sampling grid for a given value of age and social

metric as indicated.

While all of the social metrics show correlations with financial status when considered

with age (Fig. 2), the question remains of which metric is the most efficient predictor. Strong

correlations with economic wellness are observed for the feature pairs (age, k-shell) (R2 =

0.96, Fig. 2b) and (age, CI) (R2 = 0.93, Fig. 2d). Supplementary Note 6 (Supplementary

Figures 7 – 9) provides further comparison when considering the metrics alone, indicating

that k-shell and CI better capture the correlation with credit limit. Between these two

metrics, CI guarantees a requirement for both strong correlation and sufficient resolution.

K-shell cannot capture further details due to its limitation of values (k-shell ranges from 1

to 23, dividing the whole population into this small number of shells with a typical shell

containing tens of millions of people), while CI spans over seven orders of magnitude; see

Supplementary Figure 5. This high resolution implies that CI is a more accurate social

signature for the financial status of the individuals. According to its definition (Fig. 1d), a

top CI node is a moderate to strong hub surrounded by other hubs hierarchically placed at

distance `. However, we emphasize that CI is just a useful strategy for the reasons shown

above, and by no means the only or best strategy to correlate the wealth of individuals and

their network influence.

While the theory behind CI is a global maximization of influence, CI represents the

local approximation to this global optimization. Thus, CI represents a balance between a

global optimization and its local approximation, taking into account the first 2 or 3 layers

of neighbors via the parameter `, which represents the size of the sphere of influence used to

define the importance of a node, Fig. 1d. By changing `, we discover that CI with ` = 2 is

sufficient to capture the correlation between network influence and wealth (Supplementary

Figure 10).

To track the effect of CI independently of age we investigate the effects of CI inside two

6



specific age groups in Figs. 3a and 3b. In both age groups, high CI is always accompanied

by a higher population of wealthy people. A relatively smaller slope in age group <30

suggests that the CI network effect is more sensitive for older people with more mature and

stable economic levels, than for younger people (see in Supplementary Figure 6). When we

combine age and CI quantile ranking into an age-network composite: ANC = α Age +

(1 − α) CI, with α = 0.5, a remarkable correlation (R2 = 0.99, Fig. 3c) is achieved. By

combining network information with age, the probability to identify individuals with a high

credit limit reaches ∼ 70% at the highest earner level. Such a level of accuracy renders the

model practical to infer individuals’ financial fitness using network collective influence as we

show next.

Validation by Marketing Campaign

To validate our strategy we perform a social marketing campaign whose objective is

the acquisition of new credit card clients, by sending messages to affluent individuals (as

identified by their CI values) and inviting the recipients to initiate a product request (see

Supplementary Note 8). We note that in this experiment we use an independent dataset

from a different time frame, and we use only the CI values extracted from the network to

classify the targeted people. Specifically, we use the communications network resulting from

the aggregation of calls and SMS exchanged between users over a period of 91 days. The

resulting social network contains 7.19 ×107 people and 3.51 ×108 links. The campaign was

conducted on a total of 656,944 people who were targeted by an SMS message offering the

product according to their CI values in the social network. We also sent messages to a

control group of 48,000 people, chosen randomly. To evaluate the campaign, we measured

the response rate, i.e., the number of recipients who requested the product divided by the

number of targeted people, as a function of CI. In the control group, the response rate to

the messages was 0.331%. Our results show that groups of increasing CI show an increase in

their response rate, with a sound three-fold gain in the rate of response of the top influencers

(as identified by top CI values) when compared to the random case. When we compared

the response of the high CI to the lowest CI people, the response rate increased five-fold.

The results of the experiment are summarized in Table I and in Fig. 4.

Analysis of Covariance

We note that our validation is indirect since it is not a direct prediction of financial

status, but a rate of successful response to a marketing campaign. This success rate may
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actually depend on a number of other factors that may correlate with the network centrality.

Thus, the CI metric may not necessarily be the only cause of the success rate of the targeted

campaign (for instance, geographical location may be also important). To address this point,

we perform an Analysis of Covariance (ANCOVA) [9] on all of the features to which we have

access (age, gender and registered zip code) to test the variance caused by the network

metrics and other factors (details in Supplementary Note 5 and Supplementary table 3).

ANCOVA shows that the effects of the network metrics are independent from those of the

other factors. The correlation between the CI and the fraction of wealthy people is positive

and significant (p < 0.001) in all groups of geographical communities, across genders, and

among all age groups older than 24 years (Supplementary Figure 6). The same significant

results are also obtained under different thresholds of wealth. Such significant and robust

network effects imply that network metrics may be a potential indicator for financial status.

Network Diversity and Financial Status

Our combined datasets also offer the possibility to test the importance of the diversity of

links, as measured by ties to distant communities in the network not directly connected to

an individual’s own community, at the level of single individuals [1, 4, 13]. To this end, we

first detect the communities in the social network by applying fast fold modularity detection

algorithms (Supplementary Note 7 and Supplementary Figure 11) [11, 12]. The diversity

of an individual’s links can be quantified through the diversity ratio DR = Wout/Win [10],

defined as the ratio of total communication events with people outside their own community,

Wout, to those inside their own community, Win. This ratio is weakly correlated to CI

(R = 0.4), suggesting that it captures a different feature of network influence. We implement

the same statistics of composite ranking as before, resulting in an age-diversity-composite

ADC = α Age + (1 − α) DR, with weight α = 0.5. The result (Fig. 3d) shows that

ADC correlates with individual financial wellbeing, generalizing the aggregated results in

[1] to the individual level. Thus, the social metrics considered, DR and CI, express the fact

that higher economic levels are correlated with the abilities to communicate with individuals

outside one’s local tightly-knit social community, a measure of Granovetter’s “strength of

weak ties” principle [4] and to position oneself at particular network locations of high CI

that are optimal for information spreading and structural stability of the social network.

We note that no causal inference can be established with the present data.
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Discussion

This result highlights the possibility of predicting both financial status and benefits of

socially-targeted policies based on network metrics, leading to tangible improvements in

social marketing campaigns. The high performance of CI among network metrics also sug-

gests the possible role of accessing and mediating information in financial opportunity and

wellbeing [13]. This has an immediate impact in designing optimal marketing campaigns by

identifying the affluent targets based on their influential position in a social network. This

finding may be also raised to the level of a principle, which would explain the emergence

of the phenomenon of collective influence itself as the result of the local optimization of

socio-economic interactions.

Methods

Code Availability

Source code of the Collective Influence algorithm is available at the website http://

www-levich.engr.ccny.cuny.edu/~jmao/CI/CI_HEAP.c. Other source code is available

upon request to the authors.

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly

available for privacy reasons, but are available from the corresponding author on reasonable

request.

9

http://www-levich.engr.ccny.cuny.edu/~jmao/CI/CI_HEAP.c
http://www-levich.engr.ccny.cuny.edu/~jmao/CI/CI_HEAP.c


[1] Newman, M. E. The structure and function of complex networks. SIAM review 45, 167–256

(2003).

[2] Vespignani, A. & Caldarelli, G. Large Scale Structure and Dynamics of Complex Networks:

From information technology to finance and natural science (World scientific, 2007).

[3] Wasserman, S. & Faust, K. Social network analysis: Methods and applications, vol. 8 (Cam-

bridge University Press, Cambridge, UK, 1994).

[4] Granovetter, M. S. The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973).

[5] Granovetter, M. The impact of social structure on economic outcomes. J. Eco. Perspect. 19,

33–50 (2005).

[6] Eagle, N., Macy, M. & Claxton, R. Network diversity and economic development. Science

328, 1029–1031 (2010).

[7] Singh, V. K., Freeman, L., Lepri, B. & Pentland, A. S. Predicting spending behavior using

socio-mobile features. In 2013 Int. Conf. on Social Computing (SocialCom), 174–179 (IEEE,

2013).

[8] Powell, W. W. & Smith-Doerr, L. Networks and economic life. The handbook of economic

sociology 368, 380 (1994).

[9] Strang, D. & Soule, S. A. Diffusion in organizations and social movements: From hybrid corn

to poison pills. Annu. Rev. of Sociol. 24, 265–290 (1998).

[10] Burt, R. S. Structural holes: The social structure of competition (Harvard university press,

Cambridge, MA, 2009).

[11] Page, S. E. The difference: How the power of diversity creates better groups, firms, schools,

and societies (Princeton University Press, Princeton, NJ, 2008).

[12] Fernandez, R. M. & Weinberg, N. Getting a job: networks and hiring in a retail bank. Stanford

GSB Research Paper Series 1382, 1 (1996).

[13] Zimmer, C. Entrepreneurship through social networks. The art and science of entrepreneur-

ship 3–23 (Ballinger, Cambridge, MA, 1986).

[14] Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Networks 1, 215–

239 (1978).

[15] Toole, J. L. et al. Tracking employment shocks using mobile phone data. J. R. Soc. Interface

10



12, 2015.0185 (2015).

[16] Seidel, M.-D. L., Polzer, J. T. & Stewart, K. J. Friends in high places: The effects of social

networks on discrimination in salary negotiations. Admin. Sci. Q. 45, 1–24 (2000).

[17] Cho, E., Myers, S. A. & Leskovec, J. Friendship and mobility: user movement in location-

based social networks. In Proc. of the 17th ACM Int. Conf. on Knowledge Discovery and

Data Mining, 1082–1090 (ACM, 2011).

[18] Phithakkitnukoon, S., Smoreda, Z. & Olivier, P. Socio-geography of human mobility: A study

using longitudinal mobile phone data. PloS One 7, e39253 (2012).

[19] Deville, P. et al. Scaling identity connects human mobility and social interactions. Proc. Natl.

Acad. Sci. 113, 7047–7052 (2016).

[20] Pappalardo, L. et al. An analytical framework to nowcast well-being using mobile phone data.

Int. J. Data. Sci. Anal. 2, 75–92 (2016).

[21] Pan, W., Ghoshal, G., Krumme, C., Cebrian, M. & Pentland, A. Urban characteristics

attributable to density-driven tie formation. Nature Comm. 4, 1961 (2013).

[22] Gutierrez, T., Krings, G. & Blondel, V. D. Evaluating socio-economic state of a country ana-

lyzing airtime credit and mobile phone datasets. Preprint at https://arxiv.org/abs/1309.4496

(2013).

[23] Salah, A. A., Lepri, B., Pianesi, F. & Pentland, A. S. Human behavior understanding for

inducing behavioral change: application perspectives. In (Eds. Salah, A., Lepri, B.) Int.

Workshop on Human Behavior Understanding, 1–15 (Springer-Verlag, 2011).

[24] Decuyper, A. et al. Estimating food consumption and poverty indices with mobile phone

data. Tech. Rep., United Nations Global Pulse, New York (2014).

[25] Blumenstock, J. Calling for better measurement: Estimating an individuals wealth and well-

being from mobile phone transaction records. In Proc. 20th ACM SIGKDD Int. Conf. on

Knowledge Discovery and Data Mining (ACM, 2014).

[26] Morone, F. & Makse, H. A. Influence maximization in complex networks through optimal

percolation. Nature 524, 65–68 (2015).

[27] Stiglitz, J. E. The price of inequality: How today’s divided society endangers our future (W.

W. Norton & Company, New York, NY, 2012).

[28] Onnela, J.-P. et al. Structure and tie strengths in mobile communication networks. Proc.

Nat. Acad. of Sci. 104, 7332–7336 (2007).

11



[29] Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility

patterns. Nature 453, 779–782 (2008).

[30] Eagle, N., Pentland, A. S. & Lazer, D. Inferring friendship network structure by using mobile

phone data. Proc. Nat. Acad. of Sci. 106, 15274–15278 (2009).

[31] Pei, S. & Makse, H. A. Spreading dynamics in complex networks. J. Stat. Mech. Theor. Exp.

2013, P12002 (2013).

[32] Page, L., Brin, S., Motwani, R. & Winograd, T. The pagerank citation ranking: Bringing

order to the web. Tech. Rep. 422, Stanford InfoLab (1998).

[33] Kitsak, M. et al. Identification of influential spreaders in complex networks. Nature. Phys. 6,

888–893 (2010).
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FIG. 1. Patterns of network influence mimic patterns of income inequality. Visualization

of communication activity of the population in (a) the top 1% (with credit limit larger than USD

$25,000, converted, in the country of study) and (b) bottom 10% (with credit limit smaller than

USD $600, converted) of total credit limit classes. Links are between bank clients who have

registered their zip code. Resolution of both plots is 1700 × 1000. The number of bank clients

inside each community is reflected by the size of the node. Average credit limit is denoted by a

node’s grayscale. The color and thickness of the edges reflects the number of communication events

between different communities. (c) Examples of the ego-network (extended to two layers) for an

individual in the top 1% wealthy class and (d) an individual in the bottom 10% class. The networks

show two distinct patterns of social ties according to high and low economic status: the former is

characterized by large CI, the latter by low CI. (e) Schematic representation of a network under

k-shell decomposition [5]. (f) Example of the calculation of CI. The collective influence Ball(i, `)

of radius ` = 3 around node i is the set of nodes contained inside the sphere and ∂Ball is the set

of nodes on the boundary (brown). CI is the degree-minus-one of the central node times the sum

of the degree-minus-one of the nodes at the boundary of the sphere of influence.
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FIG. 2. Fraction of wealthy individuals vs. age and network metrics. Correlation between

the fraction of wealthy individuals vs. age and (a) degree k (R2 = 0.92), (b) k-shell (R2 = 0.96),

(c) PageRank (R2 = 0.96), and (d) log10CI (R2 = 0.93). Only those groups with population

larger than 20 are shown in the plot. The four metrics correlate well with financial status when

considered with age. Further correlations are studied in Supplementary Note 6, indicating that CI

could be considered as the most convenient metric out of the four due to its high resolution.
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FIG. 3. Fraction of wealthy individuals over different age and composite ranking

groups. Correlation between the fraction of wealthy individuals as given by the top 25% credit

limit and CI in different age groups of (a) 18-30, (b) >45. Correlations between top economic

status and large collective influence as determined by CI values in different ages are significant in

all age groups, while the slope of the linear regression is larger in the older group (0.053 compared

to 0.037). (c) Age-network composite ranking ANC = 1/2 Age + 1/2 CI, and (d) age-diversity

composite ranking ADC = 1/2 Age+ 1/2 DR. By combining the network metrics with age into

a composite index, the chance to identify people of high financial status reaches ∼ 70% for high

values of the composite. Both R2 show a high level of correlation (R2 = 0.99 and 0.96 for ANC and

ADC, respectively), making both composites good predictors of wealth in practical applications.
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FIG. 4. Response rate vs. CI quantile in the real-life CI-targeted marketing campaign.

The response rate increases approximately linearly with CI ranking. The CI-targeted campaign

shows a three-fold gain for the top influencers with high CI, as compared with a campaign targeting

a randomized control group.
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TABLE I. Results of the real-life marketing campaign. Individuals (“Count”) were targeted

according to their quantile CI ranking in the whole social network obtained from phone communi-

cations activity. The response to the campaign (“Answered Yes”) was computed to calculate the

Response Rate.

CI range Count Quantile Answered Yes Response Rate

[0,48] 66495 0.1 170 0.26%

(48, 246] 65164 0.2 218 0.33%

(246, 600] 65961 0.3 316 0.48%

(600, 1144] 65376 0.4 332 0.51%

(1144, 1992] 65477 0.5 363 0.55%

(1992, 3408] 65477 0.6 458 0.70%

(3408, 6032] 65736 0.7 493 0.75%

(6032, 11772] 65641 0.8 555 0.8%

(11772, 28740] 65683 0.9 657 1.0%

(28740, 2719354] 65683 1.0 573 0.87%
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SUPPLEMENTARY INFORMATION

Supplementary Note 1 - Datasets

The present framework and data acquisition have gone through an extensive process of

revision and approval that took more than one year and have IRB approval Protocol No.

2016-1418 at City University of New York.

In the framework of the study, the private and/or sensitive information of the telecommu-

nications company clients was protected. In particular, the Bank didn’t gain access to any

individual information about the telecommunications company users. Similarly, the private

information of the Bank’s clients was protected in the framework of the study. In particular,

the telecommunications company didn’t have access to the individual information of the

Bank’s clients. The variables shared were revised to guarantee that the privacy of clients

was protected.

All of our datasets are encrypted and securely stored. The mobile dataset consists of

records of phone calls and SMS (short message service) metadata which was collected from

clients of a major operator of a Latin American country. The dataset is anonymized. All the

data are encrypted and stored in a server secured by enterprise-grade firewall. The records

cover a period of 122 consecutive days. Each phone number was encrypted by a high level of

hashing in order to eliminate all possible access to personal information. For our purposes,

each CDR (Call Detail Record) is represented as a tuple 〈x, y, t, dur, d, l〉, where x and

y are the encrypted phone numbers of the caller and the callee, t is the date and time of

the call, dur is the duration of the call, d is the direction of the call (incoming or outgoing,

with respect to the mobile operator client), and l is the location of the tower that routed

the communication. Similarly, each SMS metadata record is represented as a tuple 〈x, y, t,

d, l〉. We constructed a social network G = (N,E) based on the phone call and SMS traffic.

Both reciprocal and non-reciprocal links are preserved for further processing.

In inferring the real social network from the mobile network, we take the assumption that

the communication demands are rigid against the cost, which is usually affordable to most

families (∼USD $17 monthly cell phone service fee vs. ∼USD $600 monthly income in the

year data was collected, respectively). Thus, the direct impact of an individual’s financial

status on the communication structure evidenced in the mobile phone network might be
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limited. However, the financial cost of using phone services makes it possible that there is

a systematic bias in how much wealthy individuals use the phone services relative to people

that have less money to spend on phone calls. At this point, with the present data, we

cannot rule out this possibility.

The financial dataset from a major bank in the same country was collected during the

same time period as the mobile dataset. These data record financial details of 1.23 × 106

clients assigned unique anonymized identifiers over the same three-month period as the

mobile network. The dataset consists of records of the bank clients’ age, gender, credit

score, total transaction amount during each billing period, credit limit of each credit card,

balance of cards (including debit and credit), zip code of billing address, and encrypted

registered phone number. A subset of 5.02 × 105 clients have an encrypted mobile phone

number, thus enabling them to be matched with the mobile communication dataset. The

phone numbers are encrypted in the same way as in the mobile dataset, which guarantees

that the two datasets are matched. Excluding the information on credit lines, all other

personal information is erased. We sum up the credit limits of all the credit cards of each

account owner to represent the total credit limit of each individual.

In the absence of direct access to an individual’s income and total assets, evaluating an

individual’s financial status remains an open question. In this dataset, we can access the

following factors:

Transaction amount, which also directly reflects the individuals’ consumption patterns.

However, since it is common that one holds multiple accounts in different banks, and some

of these may not be used at all, records in only one bank might not correctly reflect the

real spending ability of an individual. Similar reasoning can be applied to total credit card

balance per month, which could also lose its ability to measure one’s financial status.

Credit scores assigned to individuals by credit scoring agencies are also good indicators of

financial status. However, the values of credit scores are quite limited, ranging from 300 to

850. This limited range makes the credit score a low-resolution indicator of wealth that does

not allow us to correctly classify a large number of people into well-defined financial classes.

On the other hand, the credit limit ranges over three orders of magnitude, allowing us to

correctly classify the entire population. Considering the weaknesses of the other features,

total credit limit is the most convenient measure of personal financial status in the present

dataset.
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Instead of transaction amounts and credit scores, we choose the total credit limit which is

assigned by the bank after comprehensive evaluation of an individual’s financial status, as a

proxy for financial status. Since detailed information on how the credit limit is assigned is not

provided, there are several possible factors that could cause bias in inferring an individual’s

real economic status. These include the delay of credit limit in reflecting a change in an

individual’s financial status, possible correlation with the age of the account, and so on. In

fact, the credit limit might be capturing the amount of information the bank has about the

customer, instead of his/her actual income.

Supplementary Note 2 - Removing non-human-operated lines

Inferring social network structure through mobile phone data requires the removal of lines

operated by non-humans. Due to privacy restrictions, we could not filter business landlines

and spawn spreaders at the outset. Several ways of filtering the landlines were applied in

previous works, including setting a cut-off threshold degree [1] or only considering reciprocal

phone calls [2]. However, these methods usually also cut off some important human com-

munication behavior in that particular window of observation. All communication events

should be considered in evaluating the social network. Therefore, the key problem is to find

a method to distinguish human- and non-human-operated lines while retaining maximal

information about individuals’ communication patterns.

Although we do not have the human/non-human label for the totality of the phone lines,

which could separate at the outset the non-human-operated lines, we are in possession of the

set of phone numbers registered with the bank dataset. These human-operated lines provide

the possibility of supervising a machine learning process to learn the human behavior that

separates them from robots and non-human-operated lines. We set up a hypothesis test by

modeling the human-operated lines based on several variables. We first cluster the human-

operated lines in a hyperspace. A new unlabeled node will be assigned a p-value according

to its distance to the cluster. By carefully choosing a threshold of the p-values, we can label

the node according to whether we accept or reject the hypothesis that the line is operated

for personal use.

A training set consisting of the phone lines in the bank database (1.23×106 nodes), which

is around 1% of all of the data in the entire network (1.10 × 108 nodes), was set up. We
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define a call or message from phone number i to j as a ‘communication event,’ and denote

the total number of communication events on the link as Wi→j. The key assumptions of the

model are the following:

1. Communication between lines of personal use is usually (but not always) reciprocal.

This means that the fraction of paired communication events on human-operated lines is

generally higher than that of unpaired ones. Namely, it suggests that although communica-

tion load difference Di on every line:

Di =

∣∣∣∣∣∑
j∈∂i

Wi→j −
∑
j∈∂i

Wj→i

∣∣∣∣∣ (1)

should increase with degree k, it should be bound by an upper limit in the case of human-

operated lines. Numbers operated for non-personal use like business hubs and spawn spread-

ers may have very large Di because they are usually operated only for sending or receiving

phone calls independently, but not for both at the same time.

2. Other types of business hubs may have large numbers of paired communications despite

their limited Di. These business hubs include the phone numbers for company landlines,

roadside assistance, or other services requiring instant follow-up by the recipient of the phone

call. To filter out these hubs we assume that the paired communication:

Ri =
∑
j∈∂i

min(Wi→j,Wj→i) (2)

also increases with k, but is limited for lines for personal use. The decay of the tail is

supposed to follow a power-law due to the preferential attachment rule [2].

The last assumption is: 3. Most phone numbers in the network are for personal use,

which results in the number of non-human-operated lines being small.

After we introduce these basic assumptions, empirical analysis can be applied to build a

model describing human-operated line behavior. The model simplifies to a parametric prob-

ability distribution depending on two random variables Di and Ri, and a variable maximum

degree k which controls the parameters. Under the preferential attachment rule of assump-

tion 2, it is reasonable to assume the distributions of both Di and Ri for a given k deviate

from a maximum entropy distribution and show a power-law tail. A good approximation is

the log-logistic distribution:

P (Di|k) ∼ LL(di, αD(k), βD(k)), (3)
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and

P (Ri|k) ∼ LL(ri, αR(k), βR(k)), (4)

where

LL(x, α(k), β(k)) =
(β/α)(x/α)β−1

[1 + (x/α)β]2
. (5)

This also suggests the logarithm of both metrics follows a normal-like but exponential

tailed logistic distribution:

P (logDi|k) ∼ L(di, µD(k), sD(k)), (6)

and

P (logRi|k) ∼ L(ri, µR(k), sR(k)), (7)

where

L(x, µ(k), s(k)) =
1

4s(k)
sech2

(
x− µ(k)

2s(k)

)
, (8)

with µ(k) = log(α(k)), and s(k) = 1
β(k)

. Based on the knowledge we have, this distribution

is the best choice even though we cannot precisely provide an exact fitting. However, the

fitting results strongly support the approximation geometrically (Supplementary Figure 1).

The model involves four parameter sequences: µ̂D(k), ŝD(k) and µ̂R(k), ŝR(k). To determine

the function of dependency, we pick the interval k = 40 to 160. We consider this a normal

range of degrees wherein the nodes are almost all human-operated to fit the trend of µ and

s. Adequate numbers of observers in each degree division guarantee the reliability of the

results. The estimated µ̂D(k), ŝD(k) and µ̂R(k), ŝR(k) can be simply described by linear

models within this range (Supplementary Figure 2, R2 > 0.98). The relations are then used

to predict parameters under other degree ranges.

After validating the assumptions, we are able to implement the learning process by per-

forming a hypothesis test:

1. Fit the model of training data and get the sequence of estimated µ̂D(k), ŝD(k), µ̂R(k),

and ŝR(k).

2. For each node i with given difference di, number of communication pairs ri and degree

ki, calculate the p-value of pD(i) = P (D < di|ki), and pR(i) = P (R < ri|ki).

3. Set a threshold p using the following test to classify the nodes:

If:

p < pD(i) < 1− p ∧ p < pR(i) < 1− p (9)
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then i is a human-operated line. Otherwise a p-value outside the range defined above will

be rejected by the null hypothesis: H0 → i is a human-operated line. It will be labeled as

a non-human-operated business hub due to its extraordinarily unbalanced communication

pattern or large volume of communication events.

Last but not least, the threshold p should be optimized. Suppose the network follows the

exact distribution given by the model above. The fraction of outliers (non-human-operated

lines) ε is exactly 2p. The difference ε− 2p can be approximately regarded as the number of

non-human-operated lines or ‘outliers’. Supplementary Figure 3 is the plot of p over ε− 2p.

A maximum is reached when p ∼ 1.6×10−5. At that point, the filter is the most sensitive to

detecting outliers since it covers the boundary of human- and non-human-operated nodes.

The result of data filtering is shown in Supplementary Figure 4. The final network has

1.07 × 108 nodes (97.27% of the total data) and 2.46 × 108 links. There are 4.51 × 107

reciprocal social ties. The size of the giant connected component is 99.2% and the average

degree is 4.7. The maximum degree k is 1056 and the maximum total communication load

of a single node is ∼ 10K including messages and calls, which is reasonable for a person who

is active in business contacts during a three-month period.

Supplementary Note 3 - Entropy Analysis

In order to explore the structural differences between people with different levels of credit

limits, we performed an entropy analysis. First, we choose people within the top 5% and

bottom 5 to 10% credit limit percentiles, representative of the wealthy and poor populations

respectively. Then, we randomly divided both groups into 20 small subgroups where each

subgroup contained N(0) ∼ 2700 bank clients. Next, we expanded each subgroup’s contacts

by a distance ` to get a subnetwork and clustered the nodes in the subnetwork through

modularity analysis (Supplementary Note 6) into different communities, finally counting

the number of nodes inside each community (ni). The entropy of this subnetwork is defined

as:

S = −
∑
i

pi log pi, (10)

where pi = ni∑
i ni

is the fractional size of community i. Also, we introduced two indicators:

(1) Rn(`) = N(`)/N(0), which is the ratio between the size of the augmented network N(`)
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and the size of the initial subgroup N(0), and (2) Rc(`) = C(`)/C(0), where C(`) is the

number of communities in the augmented network and C(0) is the number of communities

in the initial subgroup. Supplementary Table 1 shows the results of entropy S, Rn(`) and

Rc(`) across an average of 20 subgroups, with uncertainties.

The entropy in subnetworks generated from the poor population is higher than in sub-

networks generated from the wealthy population, while the numbers of both the total com-

munities and nodes are smaller. This suggests that the sizes of the communities in the

subnetwork of poor people are relatively more balanced than in the wealthy population.

Namely, wealthy people are more likely to form larger and more closely-connected commu-

nities which result in relatively low entropy. The result of Rn and Rc shows the significant

difference between the size and diversity of the subnetworks of the wealthy and poor popu-

lations. By expanding their contacts, people with higher credit limits ‘collect’ more people

and more communities. Such differences exist even when we increase the value of ` to 4.

The result of the entropy analysis implies that the network structure of these two groups

may be significantly different. Wealthy people have higher diversity in mobile contacts and

are centrally located, surrounded by other highly-connected people (network hubs).

Entropy analysis results also provide evidence of homophily, which implies that there

exists a higher probability that two wealthy individuals are connected than that a wealthy

individual and an extremely poor individual are connected. Since society is known to have

this strong stratification property embedded in social networks, we would expect that this

feature is expressed in our network. For example, if wealth implies higher degree, then

homophily will lead to degree correlations, higher k-shell scores for wealthy individuals, and

higher CI. Thus, part of the effect we observe in the present study might be due to the effects

of homophily. However, the exact picture of how homophily affects the wealthy population

is still to be discovered.

Supplementary Note 4 - Social Network Metrics

In order to capture the analytical evidence describing the effects shown in Figs. 1a–d, we

introduce four different metrics to evaluate network influence [3, 4].

1. Degree centrality ki is the simplest evaluation of an individual’s local contact size.

It requires minimum information and is easy to calculate. Other centralities such as be-
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tweenness centrality cannot be efficiently calculated in our networks due to their nonlinear

running times with system size.

2. k-core and k-shell index ks [5] capture the centrality of a node in the global network by

the method of k-shell decomposition. In this method, nodes are removed iteratively if their

degree ki < k until all the remaining nodes have degree equal to or greater than k. These

nodes remain in the k-core of index k. The largest k-core a node can hold is the k-shell index

ks, which means the node is in the ‘shell’ of the k’th core but outside the k+ 1’th core. The

k-shell or k-core number is a global metric. It has been proven efficient in identifying single

influencers through the SIR model [5]. The k-shell index requires the overall information

of the network. It is a quantity that does not allow one to classify the nodes with high

resolution: there usually exist a few k-shells in the whole system, each containing many of

the nodes in the network. Fig. 1c is a schematic example of a k-shell in a network.

3. PageRank [6] is as eigenvalue centrality metric used to evaluate the probability that

information or knowledge will likely visit a node through a random walk. PageRank is

calculated through an iterative algorithm in which nodes collect PageRank values from

their neighbors in every iteration. For simplicity, each node is initially assigned a value of

PR(i) = 1. During each iteration, node i collects a PageRank value through the link pointed

from its neighbor j (j → i) as the PageRank of an adjacent node divided by its outbound

degree kjout. Namely,

PR(i) = (1− d) +
∑

j∈(∂i→i)

PR(j)

kjout

. (11)

Here ∂i→ i is the set of points which have outbound links to i, and d is a damping factor

which we choose as 0.7 in our work. When a converging threshold (10−4) is reached, the

iteration stops and outputs the final result of PageRank.

Although PageRank was originally proposed for ranking websites, it has also been applied

in social network analysis. Given the assumption that senders of messages or makers of phone

calls are likely to be the ones providing the information being communicated, PageRank is a

good metric to evaluate the likelihood that an individual captures the information spreading

in the network. Similarly to k-shell, PageRank requires the global information of the whole

network. However, it is easy to update when the network changes.

4. Collective Influence (CI) is an algorithm to identify the most influential nodes via

optimal percolation [7]. Rather than the above heuristic metrics, Collective Influence is
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introduced by a theoretical approximation of the solution to a problem of influence max-

imization in locally tree-like social networks [8]. CI minimizes the largest eigenvalue of a

modified non-backtracking matrix of the network in order to find the minimal set of nodes

to disintegrate the network. It has been shown that this process maximizes the spread of

information via a threshold model of spreading and also provides the most important nodes

for the integrity of the network (optimal percolation). Each node is associated with a CI

value, and those with the top CI values are the most influential nodes in the network. The

definition of CI is given by:

CI(i) = (ki − 1)
∑

j∈∂Ball(i,`)

(kj − 1), (12)

where the Ball(i, `) is defined in the text. We should note that the mobile communications

network is a typical small world network (average path length < ` >∼ 8.9), and the radius

` of the ball is limited by the network diameter.

Of the metrics we investigated so far, CI draws our attention since in practice, it has

advantages in resolution, correlation with wealth, and scalability to massively large social

networks. On the “global versus local” issue, we point out that while CI comes from a

global theory of maximization of influence, it represents a local approximation in a sphere

of influence of finite radius `. Thus, it is a convenient way to quantify influence in large

social networks due to its scalability. Furthermore, in cases where the whole picture of global

connectivity is incomplete, the local connectivity up to a few layers ` might be enough to

define network influence and predict the financial status of an individual. On the other

hand, we have shown that global quantities like the k-core are also good for capturing

an individual’s financial status. Indeed, the global k-core contains nested structures of

relatively large degrees, which somehow resemble the concentric spheres of influence of a

high-CI node. However, the k-core suffers from resolution problems: wealthy people might

be located preferentially in the core of the network, but this core is too large to locate them

with accuracy. For instance, there are only 25 k-cores in the whole network (Fig. 2b) to

separate one hundred million people, while CI has a larger resolution spanning eight orders

of magnitude. Thus, in practical terms, CI presents advantages both in resolution and in

high correlation with wealth.

Also, CI represents a balance between a global maximization of influence and its local

approximation in successive layers, allowing one to use the CI metric in large-scale datasets
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composed of hundreds of millions of individuals. Overall, we emphasize that CI is just

a useful strategy for the reasons shown above, but by no means the only or best way to

express the wealth of individuals. More generally, supervised machine learning can be applied

to the problem of predicting an individual’s credit score based on a number of features.

These methods could include not only CI but also the other measures discussed, along with

many other standard network metrics. Augmenting these measures for determining feature

importance could allow us to better assess which features are important to determine the

wealth of individuals with higher accuracy than that shown by CI in the present study. The

prediction model will give standard measures of features’ importance in further studies when

we have access to more data. Future work will follow this promising direction.

Supplementary Note 5 - Financial parameters and other factors

We use the following statistics to identify economic effects: First, we separate the in-

dividuals into groups on sampling grids in variable space (1D as segment bins and 2D as

grids). In each group (with more than 10 people for statistical significance), we count the

fraction of wealthy individuals, defined as those individuals in the top 4-quantile Q > 0.75

or who have a total credit limit greater than USD $4,000 (converted).

Besides the credit limit, transaction amount and credit score the bank data also provides

the information of the clients’ birth years. Age as a variable is independent from the network

metrics (Supplementary Table 2) and correlates with the percentile-ranking credit limit

(r = 0.42). However, we do not know the model used by the bank to assign the credit limit,

so the age may be a complex reflection of the mixed effects of both increased income and

increased account history. Thus, the correlation between age and credit limit might not be

capturing only variation in actual wealth but also the amount of information the bank has

about the customer.

To quantitatively evaluate the variance caused by network metrics when combined with

other factors, we employed Analysis of Covariance (ANCOVA) [9]. ANCOVA is an analysis

method which conducts regressions between covariate (CV) and dependent variables (DV)

under different groups of categorical independent variables (IV). In this case, regression

was made between covariate CI and the dependent variable, the fraction of wealth. As

in Fig. 2d, CI is divided into 100 partitions. Based on the information to which we have
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access, ANCOVA was applied separately among the following independent variables: gender,

age, and residential communities. Gender was naturally divided into two groups. Age was

grouped year by year from 18 to 65 in a total of 48 groups. The communities were identified

by their registered zip code. To reduce the dimensionality of the problem and directly

quantify the effect of geographical location, we first sorted the communities by the fraction

of wealthy people inside and divided them into 50 balanced groups. We assigned to every

community an ‘Index of Community Wealth’ (ICW), which is the quantile ranking of each

group that the community belongs to.

The correlation between IVs and CV are shown in Supplementary Table 3. The negli-

gible correlation between these variables ensures the basic assumption of independence in

ANCOVA. Also, in order to test the robustness of our results, the same method was applied

under different thresholds of credit limits to define the wealthy population: Q = 0.75 (the

threshold we used), 0.85 and 0.95.

The basic output of ANCOVA is a series of p-values showing the significance level of the

regression model between CV and DV in different IV groups, and the analysis of variance

(ANOVA) [9] evaluating the significance of the IVs’ effects. The estimated slopes with 95%

confidence intervals are shown in Supplementary Figure 6. Our results show the following:

1. All IVs’ effects are significant (p < 0.001); namely, the fraction of wealthy people is

different among different groups of gender, age or communities.

2. Inside most groups of each IV, the variation caused by CI is also significant (p < 0.001).

The only exception is that CI’s effect is only significant when the clients are older than 24

years (Supplementary Figure 6b). This result indicates that the effect of network metrics,

in most cases, is independent from the other known factors.

3. The slope of regression varies in different groups. However, all the slopes with signifi-

cant values are positive.

4. The results of 1 to 3 above are robust under different thresholds of credit line, so Fig. 2

is also similar under different thresholds. Therefore, we focus our results on a given quantile

threshold Q = 0.75 for the remainder of the study. Although the violation of homogeneity

in 3 prevents us from making a direct comparison between variables, these results imply

that CI significantly and independently affects the fraction of the wealthy population.
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Supplementary Note 6 - Correlation between network metrics and financial sta-

tus

To compare the value of the social metrics to the economic status of individuals, we have

to draw out the best one to describe network location influence effects. We sum up all the

age groups and consider the effect of network metrics to demonstrate the effects of each

variable.

The reason for using the aggregated model instead of the direct correlations at the in-

dividual level is because the regression models at the individual level are based on certain

assumptions that are not satisfied by our data. Thus, we were unable to apply regression

models at the individual level, and instead provide data at an aggregated level. The failure

of regression models at the individual level is due to two reasons:

1. The distribution of credit limit (CL) for a given level of ANC [which is a log-normal-like

distribution with several peaks located at integers such as 50,000 or 100,000 (Supplementary

Figure 7a)] is not invariant under changes in ANC. That is, the distribution changes shape

when ANC increases, showing an increasing fraction of high-CL population while the fraction

of people around the mean value stays unchanged (Supplementary Figures 7b–d). Such

behavior directly violates the constant variance assumption of regression models and causes

the data to be poorly captured by least-square regression models.

2. Besides the above fluctuations in the credit limit, other unknown factors may provide

random fluctuations in inferring individuals’ financial status. Such combined random effects

are considerable at the individual level. However, aggregation models reduce the fluctuation

caused by random factors, and the effect of the network emerges at the population level.

Thus, we adjust our statistical model to reflect the complexity of economic effects from

network metrics and aggregate the data as follows:

First we separate the individuals into groups of sampling grids in a variable space (in 1D

as segment bins and in 2D as grids). In each group (with more than 10 people for statistical

significance), we count the fraction of wealthy individuals defined as those individuals in

the top 4-quantile Q > 0.75 or who have a total credit limit greater than (equivalent to)

USD $4,000. The dependence of our results on different wealth thresholds is provided in

Supplementary Note 5.

Besides the degree, the volume of communication may have correlations with economic
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status since we could not eliminate the systematic bias caused by phone call service fees.

We investigate the correlation between the fraction of wealthy people and the average com-

munication load per link: AVLi = Wi

ki
, where Wi is the volume of communication events and

ki is the degree of node i. The regression result shown in Supplementary Figure 9 shows

that there is no significant correlation between the average communication volume per link

and the fraction of wealthy individuals. Therefore, the effect of communication volume is

negligible in comparison with the other variables considered in this study.

Supplementary Figure 8 shows the results. The large fluctuation in degree for higher

quantiles in Supplementary Figure 8a implies that the effect of degree involves complex

social patterns rather than only the local properties of the degree of the node. Thus, we

abandon the use of degree for further study as an indicator. k-shell is good enough to

present a positive correlation of high network location influence. However, due to the limited

values of k-core, it cannot provide finer resolution for prediction (Supplementary Figure 8b).

Therefore, k-shell is also not considered for further studies as an indicator. The performance

of PageRank (Supplementary Figure 8c) with a slightly negative correlation suggests that

it is not the optimal variable to rank economic status, and thus it is not considered herein.

Finally, CI (Supplementary Figure 8d) shows strong global correlation and satisfying

resolution, which makes it a convenient metric for quantifying the influence of network

location. The strong correlation with CI is invariant under different radii of influence `

(Supplementary Figure 10).

We notice a non-monotonic oscillatory behavior of the fraction of wealthy people when

using k and CI as variates (Supplementary Figures 8a and 8d). This effect is complex and

cannot be captured by either the degree or CI, and may not be limited to local properties.

The oscillation is reduced when using CI in the analysis, and this is one of our reasons

for choosing CI as a potential predictor. We will continue investigating the non-monotonic

pattern in future work.

Supplementary Note 7 - Modularity and Diversity ratio

Additional research on modularity was implemented as follows. Personal structural hole

[10] effects were evaluated by the ratio of total weights attached with nodes outside a commu-

nity kout, to those inside a community kin. A fast community detection algorithm introduced
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by Blondel et al. [11] was implemented in this work. The algorithm aims to maximize the

modularity function [11, 12]:

Qm =
1

W

∑
i,j

[Wij −
WiWj

W
]δ(ci, cj), (13)

where Wij is the number of communication events loaded on link i, j and ci is the community

label of node i. Wi =
∑

j∈∂iWi,j and W = Wij

∑
i,j. The global maximization of modularity

was achieved by iteratively calculating the local maximization of normalized networks based

on communities. Different communities were labeled during each iteration. Among all the

communities, we chose the clustering of the second iteration to control the average scale of the

community to 102. There are 4.92× 105 communities inside the network. The distribution

of community sizes is fat-tailed with a largest community size of 106 (Supplementary Figure

11). The fraction of wealthy individuals inside each community is independent of the size

of the community (r < 0.05).

After we label the network with its communities, we can evaluate an individual’s struc-

tural hole effect [10] by introducing the diversity ratio DR. DR is defined by the ratio of

total communication events with people outside one’s own community Wout to those with

people inside the community, namely Win, DR =Wout/Win. The ratio is weakly correlated

with CI (r = 0.4). The same statistic of composite ranking was implemented as CI with

the same number of statistic segments and composite factor α = 0.5 as in the text. The

result (Fig. 3d) shows that the structural hole effect also has a strong correlation with the

distribution of affluent individuals while it is weakly dependent on CI. This result confirms

the importance of the ability to communicate with outside communities via “weak ties” for

personal economic development [13].

Supplementary Note 8 - Marketing Campaign

In the marketing campaign, clients were approached by SMS messages offering a benefit.

In the text we sent during the campaign, we did not provide a specific product. Instead, the

only information we provided was to notify the client that he/she was eligible for an offer

from the bank. This somehow eliminated the bias caused by the nature of a product which

may have a different appeal to wealthy or poor people. We sent the following messages:

Request your credit card with benefits from (Bank name) by calling at (Bank phone number).
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Fees and requirements at (Bank url).

(Bank name) has a special offer for you. If you’re interested call at (Bank phone number).

Fees and requirements at (Bank url).

(Bank name) has a credit card fit for you. Request it by calling at (Bank phone number).

Fees and requirements at (Bank url).

(Bank name) has a credit card with benefits. Request it at (Bank phone number).

Fees and requirements at (Bank url).

(Bank name) offers you a credit card with benefits. Request it by calling at

(Bank phone number). Fees and requirements at (Bank url).

(Bank name) has an exclusive offer for you, call at (Bank phone number). Fees

and requirements at (Bank url).
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Supplementary Table 1. Results of the group entropy analysis for the wealthy population (with

quantile ranking Q > 0.95) and poor (0.05 < Q < 0.1) population.

S Rc(`) Rn(`)

` = 1
wealthy 6.37±0.12 5.5±0.4 9.3±0.7

poor 6.68±0.10 4.3±0.3 7.1±0.5

` = 2
wealthy 7.94±0.10 141.3±4.7 6.3± 0.2× 102

poor 8.38±0.14 101.6±3.4 3.1± 0.1× 102

` = 3
wealthy 9.11±0.11 443.0±11.5 7.6± 0.4× 103

poor 9.30±0.12 390.9±6.0 4.9± 0.4× 103

` = 4
wealthy 10.23±0.02 565.4±10.7 5.10± 0.04× 104

poor 10.23±0.04 517.0±9.0 4.23± 0.05× 104

Supplementary Table 2. Correlation (r-values) between the metric centralities obtained from the

social network and age.

k k-shell PageRank log10CI

Age -0.021 -0.016 -0.033 -0.007

k 0.972 0.648 0.953

k-shell 0.589 0.960

PageRank 0.575
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Supplementary Table 3. Correlation between covariate CI and independent variables:

age, gender and Index of Community Wealth (ICW). The correlation between gender and

other features is presented through the Point-Biserial correlation coefficient, and other correlations

are Pearson correlations. Point-Biserial correlation coefficients quantify the male as 1 and female

as 0 and are defined as: r = X̄1−X̄0
sn−1

√
n1n0
n(n−1) . n is the total number of samples. n1 and n0 refer to

the population inside each group. X̄1 and X̄0 are the means of the variables in each group. sn−1

is the estimated unbiased standard deviation of X: sn−1 =
√

1
n−1

∑n
i=1(Xi − X̄)2.

CI Gender ICW

Gender -0.0419

ICW -0.0093 0.0131

Age -0.0007 -0.0116 -0.0022
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Supplementary Figure 1. Logistic fitting result for k = 50, 100 and 200. The result of paired

communication R is presented in log-log scale in order to highlight the fitting for the exponential

tails.
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Supplementary Figure 2. Scaled parameter estimation and its linear fitting: (a) µ̂D(k), (b)

ŝD(k), (c) µ̂R(k), (d) ŝR(k).
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Supplementary Figure 3. Number of outliers ε − 2p vs cut-off threshold p. Maximum is

reached when p ∼ 1.6× 10−5.
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Supplementary Figure 4. Final result of data filtering. The result is presented in the space of

k and communication pairs R. The data points were put into a grid bin of 200×200. The color

represents the fraction of outliers in each bin. The filter gives us a gradual boundary of human-

and non-human-operated lines.
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Supplementary Figure 5. Distribution of network metrics. (a) degree, (b) k-core, (c) PageR-

ank, and (d) Collective Influence (` =1 to 4). Collective Influence follows a double-tailed distribu-

tion. A small peak for larger CI emerges for even `.
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Supplementary Figure 6. Estimated slopes in different groups of independent variables.

(a), Age, (b), Index of Community Wealth (ICW), and (c), Gender. 95% confidence interval is

marked by error bars in the plot. Different thresholds of wealth Q are labeled by different colors.
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Supplementary Figure 7. Distribution of Credit Limit (CL) under different age-network

composite (ANC) groups. The distribution is not invariant under changes in ANC.
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Supplementary Figure 8. Fitting results of wealthy population vs. network influence

metrics along with corresponding R2 values. (a) Degree (0.51), (b) k-core (0.99), (c)

PageRank (0.28), and (d) Collective Influence (0.80). All variables are normalized to [0, 1] by

the quantile ranking to ensure an adequate number of data points in each partition. The entire

quantile ranking is divided into 200 segments from minimum to maximum. Only those groups with

population larger than 10 are shown on the plot. Out of the four metrics, CI is the most convenient

for capturing high correlations and presenting a large range of values that allow us to classify the

whole population.
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Supplementary Figure 9. Fraction of wealthy people vs. average communication event

load per link (AVL). AVL is in log-10 scale and divided into 200 partitions. Each group with

a population of more than 10 is considered in counting the fraction of wealthy people inside the

group.
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Supplementary Figure 10. Fraction of wealthy people in each group against age and

logarithm collective influence for different radius. Radii ` range from 1 to 3. Communities

are determined by 200 segments covering from the bottom 1% to top 1% of CI values. Only those

groups with population larger than 10 are shown on the plot.
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Supplementary Figure 11. Distribution of community sizes in the entire social network

at second iteration.
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