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a b s t r a c t 

Cellular technologies are evolving quickly to constantly adapt to new usage and tolerate the load induced 

by the increasing number of phone applications. Understanding the mobile traffic is thus crucial to refine 

models and improve experiments. In this context, one has to understand the temporal activity of a user 

and the user movements. At the user scale, the usage is not only defined by the amount of calls but also 

by the user’s mobility. At a higher level, the base stations have a key role on the quality of service. In this 

paper, we analyze a very large Call Detail Records (CDR) over 12 months in Mexico. It contains 8 millions 

users and 5 billions of call events. Our first contribution is the study call duration and inter-arrival time 

parameters. Then, we assess user movements between consecutive calls (switching from a station to an- 

other one). Our study suggests that user mobility is pretty dependent on user activity. Furthermore, we 

show properties of the inter-call mobility by making an analysis of the call distribution. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

With the constant evolution of mobile technologies and digital

etworks, such as new generation of smartphones, and new

pplications, usage of cellular networks tends to change deeply.

he analysis of phone calls from real logs is thus fundamental,

oth from phone operators and from other stakeholders’ points

f view. For the operators, it gives insights on the network usage

nd load, and consequently on possible dimensioning issues. It

lso allows to adapt or propose services according to the user

rends. More generally, mobile phone datasets allow to derive a

tatistical analysis of human activities at a fine level of details.

his unprecedented flow of continuous information on human

ctivity represents a tremendous opportunity for research and

eal-world applications. Indeed, models or simulations that are

sed to study dimension cellular networks, as queuing theory for

nstance, need to take into account the recent evolution of net-

orks load and may progress by considering our new observations

hat concern the call duration and the inter-arrivals (time between

wo successive calls), users mobility, etc. 
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In the context of a collaboration with Grandata Labs that lever-

ges advanced research in Human Dynamics (the application of

big data” to social relationships and human behavior) to identify

arket trends and predict customer actions, we have access to the

ogs for one complete year of all calls and SMS from a top-3 Mex-

can wireless service provider with more than seven million sub-

cribers. It represents 90 millions of calls. The availability of mo-

ile phone datasets has opened the possibility to improve our un-

erstanding of how humans communicate, socialize, move around

ities, mobilize, etc. This project plans to study these logs through

ifferent dimensions: technological, sociological and economical. 

. Contributions 

In this paper, we focus on the analysis of this trace from the

etwork/operator point of view. Contributions can be summarized

hrough three items. 

First, we perform a macroscopic analysis of our dataset. We

how that activity, computed here as the number of calls per hour,

aries at different scales. When the activity is seen as a signal, an

mpirical mode decomposition (EMD) allows us to derive its dif-

erent cyclo-stationary components. 

We assess phone usage and traffic properties through three dif-

erent quantities: load, inter-arrival time between two calls and

uration of a call. They are studied through two point of views:

lobally i.e. considering phone calls in the whole Mexico city, and

er base station. For the load, we establish a landscape of the

http://dx.doi.org/10.1016/j.comcom.2016.05.003
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usage of the Base Stations (BS). For the inter-arrival and duration

distributions, we confirm that the statistical traffic properties are

the same from a Base Station to another, and also at the network

scale. We compare these distributions to the classical distribution

that is systematically considered in the models, the exponential

law, and discuss its pertinence. It appears these very recent logs

(2014) still leads to the classical exponential distribution at both

scale (globally and on particular BS). For call duration, the distri-

bution tail (the part that impacts performances in queuing system)

fits by an exponential law. 

The last part of this paper is an analysis of user movements.

This contribution is twofold. We model calls and users movement

through two point processes. Whereas the first one is perfectly de-

scribed by our dataset, the second one is unknown, except that a

node movement is detected at the time of a call. Indeed, when a

user changes of base stations, it does not appear explicitly in the

logs, but is detected only when a call occurs on the new BS. We

show that for this kind of problems, application of Palm calculus

theory [1,2] offers relevant estimators for the second process (de-

scribing nodes movement). The use of this mathematical tool to

the analysis of dataset is, to our knowledge, original. It applies to

data that can be described with stationary point processes. In our

context, it allows to derive: (i) an estimator of the number of calls

per time unit, (ii) a simple test on the independence between the

two processes (calls and movements), and (iii) an estimation of the

movement distribution. It highlights the benefits of Palm calculus

for data analysis to offer a formal framework to derive interesting

and practical estimators even in presence of partially observable

data. Numerical results based on this framework show that users

mobility is correlated to the calls. 

The paper is organized as follows. In Section 4 , we describe our

data set: available information, period of times, number of users,

etc. In Section 5 , we present the different results on the calls in

time and space. Section 6 proposes a method to infer the statistical

properties of the user movements, and presents the corresponding

results. We conclude in Section 7 . 

3. Related work 

The study of mobile phone data has been an active field during

these last years. Plenty of topics has been covered such as mobile

phone traffic and human mobility [3,4] . In our study as in [5] , we

have the opportunity to analyze non-sparsified CDRs that repre-

sents a 1-year nationwide data set presented in [6] . 

The amount of mobile phone traffic has an overriding impact

on the quality of service. The understanding of time evolution and

spatial arrangement of the activity, studied in [7–9] , helps to en-

hance the network infrastructure and its capacity. As an example,

the traffic analysis brings around a set of tools to detect specific

local events and anomalies [10,11] that commonly induce over-

load [12] . Predict and adapt protocols to respond to high activity

periods is a substantial benefit [13] . 

The traffic is the result of a causal chain where users and

the way they communicate to each other are the starting point.

From CDRs, it is possible to understand better the human behav-

ior and predict the traffic. For instance, [14] defines categories

of mobile call profiles and classifies network usages accordingly

and [15] makes the links between user phone usage and personal

behavior. To our knowledge, none of these studies consider the call

duration as an information pool whereas it has a great impact on

the load and on the intensity of social relations. 

Complementarly, many studies focus on human mobility and

tend to characterize, predict and model spatial individual mo-

bility [8,16–18] . As user mobility seems to be unique [19] , we

can now predict next moves according to the mobility foot-

print. However, these works presume a precise knowledge of the
witching from a spatial point to a new one. Whereas, in many

DRs, the user movement times are unknown, we suggest in

his paper that user movement times and call events are pretty

ependent. 

In the paper [20] , these authors study the user movement

etween two calls. This fine study on a small amount of users

 n = 56 ) gives us insights about the inter-call mobility (ICM) of

sers. The ICM model represents a spatio-temporal probability

istribution of users position in space and time between two con-

ecutive communication records at distinct places. Here, instead

f considering the whole trajectories, we are estimating the user

ovement distribution from the call distribution based on the

ctivity of around 7.7 millions of users during one year. 

. Data set description 

For this analysis, we use a CDR data set from a major mobile

perator in Mexico. This CDR trace contains one year of geolo-

alized phone calls all over the country of Mexico. The dataset is

nonymized. For each phone call, we have the timestamp in sec-

nd, a phone Id of the subscriber originating the call, the phone

d of the user receiving the call, the call duration in second, and

he BS of the telco company that routed the call (incoming or out-

oing). For 77% of call records, there is one location which deter-

ines the location of the phone user belonging to the telco com-

any (either the callee or the caller). When both caller and callee

re clients of the telco company, two locations are provided in our

race, one that notify that the caller is calling the callee and the

ther indicating that the callee is receiving a call from the caller.

he trace is starting from the January 1, 2014 and ending on the

ecember 31, 2014. It contains the whole 2014 year. For this pe-

iod, we have more than 4.75 billions of calls. These geolocalized

alls represent around 6% of global internal calls in the country

f Mexico. As in our study we focus on the user movements, we

ill mostly consider the geolocalized calls. We can notice in Fig. 1 ,

he missing locations have the same activity as the ratio of geolo-

alized calls is quite constantover time. Therefore, it should not

ave any impact on our results. This subset of calls is represent-

ng the activity of 7,700,208 telco users during one year. In Fig. 1 ,

e note that there are the same number of incoming and ougoing

alls. 

As already shown in [21,22] , the mobile activity varies through

ime at several scales. During the day (from midday to 8 pm), the

ctivity is greater than during the night. The number of calls as

unction of the hours of the day ( Fig. 2 ) points out the typical

eriod of lower activity during the night and greater activity dur-

ng the day. Although the number of calls varies during the day, it

aries between different days too. For instance, the activity during

eekdays is greater than during the week-end. The peak is reached

n Friday at 6 pm just after the end of the work. 

As we can notice in Fig. 2 (right), a mobile user tends to call

ore times in average than a static one. The mobility, correspond-

ng to the average number of BS explored within half an hour, and

he activity (left) are well correlated. This quick observation will

e detailed in Section 6 . 

If we consider the activity as a signal, we can observe daily

yclo-stationarity. People are organized on a daily base of 24 h

uch that the activity signal will have statistical properties that

ary cyclically with time and can be viewed as multiple inter-

eaved stationary processes. To show this intuitive point, an Em-

irical Mode Decomposition (EMD) [23] is performed on the ac-

ivity signal, the number of calls per hour during 51 days. The

MD allows to represent the non-stationary signal as sum of zero-

eans Intrinsic Mode Function (IMF) and one residue. Fig. 3 gives

he decomposition of the global call activity in high and low fre-

uencies. The IMF 2 to 5 clearly gives a daily periodic signal
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Fig. 1. Ratio of the number of geolocalized calls (green line) and ratio of the number of incoming calls (dashed blue line) over 51 days. One can observe that there are the 

same number of incoming and outgoing calls. Geolocalized calls constantly represent around 76% of the calls. We will use these data for the experiments that follow. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. The number of calls (left) and the number of active users (middle) during the 1-year period as function of the hours of the day. We note a period of lower activity 

during the night and higher activity during the day. The peak is reached at 2 pm. (right) The mobility defined as the average number of base stations reached within less 

than 30 min according to the hour of the day. 
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a spectral analysis also gives an harmonic decomposition in days

f the signal) which validate the cyclo-stationarity of the activity

ignal and the fact that globally, people are used to call or not at

he same moment of the day. The high frequency IMF 1 is also

lotted on Fig. 3 . We plot in red the mean of the residual. The sig-

al is clearly oscillating around the mean in a compact envelope

ith few extra peaks of activity. The low frequency signal is use-

ul when one tends to detect special events and anomalies on the

ctivity. 

In a mobile data trace, a lot of measures are quite heteroge-

eous like the number of contacts, the number of calls and the

ime between two calls. We show the distribution of the number

f calls per day ( Fig. 4 ). We note that around 25% of the users have

ore than two calls per day whereas 25% of users have less than

0 calls per week. Running a user movement study on a very long

eriod of time will not make sense in such conditions of strong

eterogeneity. Indeed, it is impossible to determine rather if the

ser change precisely his location during a long inactive period.

e do need a weak hypothesis on the stationarity of the total

alls signal. As we want to catch the movements of people dur-

ng the day, we decided to cut all the signal (one year long) by

lots of 2 h. During each 2-h period, we consider that the signal is

tationary. 
. Call analysis 

In the two next sections, we analyze inter-arrival times between

alls and call durations. These two quantities are the main input of

ueuing theory. The inter-arrivals describe the traffic nature, i.e. ,

he distribution of the clients arriving in the queue. The duration

f a call is related to the service time of a client once it accesses

o a resource. In our context, a resource is a couple slot-frequency

r a set of resource blocks depending on the generation of cellular

etwork we consider. In most of the queuing models, both inter-

rrivals and call durations are supposed to be independently and

xponentially distributed, leading to the famous M / M /. queues. The

eader can refer to [24] , for a deeper presentation of queuing mod-

ls applied to cellular networks. This assumption on the exponen-

ial distribution is common when considering phones traffic and

all durations [25,26] . For the call duration, there is a discussion

bout the best function that fits the distribution: a log-normal [27] ,

n exponential [28] or even a semi-heavy tail [29] . Indeed, the first

nterval of the distribution is known as non-exponential, because

all durations are usually lasting more than very few seconds. But,

he exponential assumption still offers a good approach as it is the

ail distribution, “the big clients”, that impacts the performance of

he system. 
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Fig. 3. EMD of the signal linked to the number of calls per hour. From top to bottom, there is the original signal, high to low frequencies. One can clearly identify a day 

oscillation in the IMF 2-5. IMF 1 is high frequency variation and other IMF (6 to 8) are low frequencies. 

Fig. 4. ICDF of the number of calls per user. The activity of users is heterogeneous, 

many people have few calls and some others have an active usage of the voice 

channel. 
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5.1. Inter-arrivals on a base station 

When a user is calling someone, the origin and the destination

are linked to a single BS. The attached BS are the first and last

steps of the routing. In the trace, we only have the coordinates of

the attached BS of the origin or the destination. As we miss many

non-geolocalized calls, the activity of a BS is underestimated by a

factor around 10 and the inter-arrival between two calls is overes-

timated. Yet, the shape of the distribution may be the same. 

In Fig. 5 a, we plot the inverse cumulative distribution function

of the inter-arrivals. It corresponds to the time between two suc-

cessive calls to a same BS. The distribution at the network scale,

that gathers all geolocalized calls, is plotted in Fig. 5 a. It shows that
he inter-arrivals range from 0 to several hours. These very high

alues of inter-arrivals could correspond to periods where a BS is

witched off (for maintenance or other reasons). Also, the figure

hows that 99% of the samples are less than 180 s, and 80% less

han 21 s. By considering all samples, we get very large range of

alues for which many have a small inter-arrivals. It corresponds to

eaks of traffic during the day. On the opposite, great inter-arrivals

re due to the night traffic. Nevertheless, these statistics usually

elp to dimension the network, which is usually performed with

egard to the peak of traffic. We are thus interested in the traffic

ature when the network is loaded. For these reasons, we perform

he same statistic evaluation for specific BS and time ranges. We

onsidered three particular BS at the peak of traffic. We have first

rdered all the BS as function of their load and choose three BS (BS

umbered 1175, 157 and 100) that are respectively at 60%, 70%, and

0% in this classification. The distributions are shown in Fig. 5 b. For

hese distributions, at least 80% of the samples are less than 15 s

12 times less than the case with all samples). The three distribu-

ions have been fitted with an exponential law, represented by the

otted lines in Fig. 5 c. Even if it does not match exactly, the expo-

ential is very close to these distributions. The parameters of the

xponential are 0.14, 0.19, and 0.21 and correspond to the mean

umber of calls per second. The standard deviation errors of the

t is respectively 0.0 0 05, 0.0 0 09 and 0.0 0 07. The assumption on

oisson traffic is thus verified in our case. 

.2. Call duration 

Here, we propose a study on the duration of a call. For each call

or which the destination replied, there is a duration in second. The

uration of a call is one of the parameter that has a major impact

n the load [30] . 
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Fig. 5. (a) For each BS, inter-arrival times between two consecutive calls are computed. The plot is obtained by merging all the distributions. (b) For 3 specific BS, that 

corresponds to the 40%, 30% and 10% more active BS (60%, 70%, and 90% in terms of load) the distribution of the inter-arrival time in second between two consecutive calls 

is plotted in log–log scale. (c) For the same 3 specific BS, the ICDF from 0 to 15 s is fitted by an exponential function (dashed lines). For practical reasons, x -axis is shifted 

by 1 s, we can so take the log as all values are strictly positive. 
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s  
We plot this distribution from our trace, by extracting a sin-

le duration of a random call per user. Each user counts only for

ne in the distribution 6 . Unfortunately, in our trace, a long call

s stored in several 10-min calls. So, the distribution is ending at

0 min because the end of the tail is unknown. Apart from that,

he ratio of long calls is quite small and the 10-min sessions have

 very small impact on the average and quartile results. We also

oticed that there are more values when the number of seconds

orresponds to a minute like 60s, 120s,...It is probably due to ex-

ernal artifacts like per-minute billing. The peak is reached for 34 s.

he average duration of a call is 121 s and 25% of calls last more

han 30 s whereas 75% last less than 2 min. All in all, 50% of calls

ake between 30 s and 2 min. In Fig. 6 a, the fit of the distribu-

ion with a log-normal function is quite good, the goodness of fit

s R 2 = 0 . 82 . The log-normal presents a gap with the empirical dis-

ribution for small values and for values in the tail. In Fig. 6 b, the

t of the distribution tail by an exponential distribution is very

ood as R 2 = 0 . 99 . The residual between the exponential law and

he empirical law is very small and confirms that the exponential

istribution models perfectly the distribution tail as many studies

lready noticed it. This long tail induces an heterogeneity for the

uration parameter, many durations are around 30 s and 2 min but

ome calls are still quite long. 

In Fig. 7 , the time is divided into 12 slots of 2 h each and the

verage duration is computed. From 6 am–8 am to 0 am–2 am,

he average of the call duration is increasing. As the day is go-

ng, people tends to exchange more during a voice communica-
 t  
ion. Then during the night (2 am to 6 am) people who answer

o not take the time for long conversations. The shortest durations

re recorded between 6am and 8am. According to parts of the day,

he duration is changing and the average can double from a slot

ime to another. This preliminary study on duration points out the

act that duration is not stationary and homogeneous but contains

 lot of information that is useful to refine models or adapt per-

ormance of telecom companies. These starting observations may

elp to refine models and improve performance. 

. User movement analysis 

Data collected describes sent and received calls of users. For

ach call, the localization of the BS associated to the user is known.

t allows us to know the BS location at the time the calls are made.

ased on this knowledge, we can study the statistical properties of

he BS changes, i.e. the different times at which a user is associ-

ted to a new BS. It reflects users mobility between two calls and

hould be interesting for the telecoms operator as it corresponds to

ser movements that it has to manage. Like in many CDRs, these

imes are only partially observable: we are able to detect that be-

ween two successive calls the user is not bound to the same BS

ut we do not know when it does happen exactly between these

wo calls. 

In this section, we propose two estimators. The first one de-

cribes the mean number of user movements per time unit, and

he second one is related to the cumulative distribution function
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Fig. 6. (a, top) Distribution of call duration in seconds fitted by a log-normal distribution in blue. (a, bottom) Residuals of the log-normal fit (b, top) Tail distribution of 

call duration in seconds fitted by an exponential distribution in blue. (b, bottom) Residuals of the exponential fit. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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(CDF) of the time between user movements. Also, we propose a

simple test that allows us to check if the two processes, calls and

user movements, are dependent. The different computations and

proofs rely on Palm calculus. This mathematical framework offers

a set of tools on stationary point processes. The reader can refer

to [1] for the definition and tools of Palm Calculus in IR , or [2] for

a more pedagogic introduction and its application in IR 2 . As it will

be shown, Palm calculus is particularly adapted to this study. 

A stochastic point process is a random variable. It can be seen

as an ordered set of points distributed in R . The observation of

a set of events occurring at different times can thus be modeled

through a stochastic point process. Therefore, calls and user move-
ents can be modeled through two-point processes. They are rep-

esented in Fig. 8 . The first point process is denoted N call . A sample

epresents the time of the calls for a user. At the time of a call,

e know the BS which the user is bound. Formally, it can be seen

s a mark associated to the point process N call . In Fig. 8 , we used

ifferent patterns to represent the points of N call and its associ-

ted marks: a given pattern corresponding to a given BS/mark. For

nstance, when the user 1 is bound to BS x , the points/calls are de-

icted through black discs. When the user is bound to BS y , it is

lack ring, etc. A user movement is thus detected when the mark

f N call changes. This marked point process is an exact representa-

ion/model of the data set in our possession. 
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Fig. 7. Average for the whole year of duration calls for each 2 h slot 
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The second process is N BS and is depicted through the verti-

al arrows in the figure. It represents a movement of the user, a

hange of the BS, between two calls. Our data set does not describe

 BS , but the marked process N call allows us to determine between

hich calls there was a BS change, or equivalently between which

oints of N call there is a point of N BS . For instance, for user 1 in

ig. 8 , we observe a change of BS, from BS x to BS y, between the

oints/calls T call 
i 

and T call 
i +1 

. Consequently, we infer the presence of

 point of N BS between the points T call 
i 

and T call 
i +1 

. 

Formally, N BS and N call are random variables taking their values

n the counting measures set on (IR, B) (where B denotes the Borel

-field of IR ). We will use this definition in the different formulas,

ut as previously mentioned, it is more convenient to see a sample

s a set of points (the support of the counting measure). A sample

f N call and N BS can thus be seen as a set of points in IR , and cor-

espond to the different time calls ( N call ) and BS changes ( N BS ) for

 given user (a sample = a user). 

A rapid analysis of the data showed that the process N call is

ot ergodic, i.e. , statistics made on a given sample do not allow

o obtain convergent estimators. For instance, the mean number
User 1

User 2

User n

.

.

.

.

.

Points of the point 
process Ncall

Call through BS x Call through BS y

Ti
call

Tj
BS

Ti+1
call

ig. 8. Description of the two-point processes N call and N BS . The point process N BS is uno

s to know the intervals of N call where they are located and to derive statistical propertie
f calls per time unit are very different from a user to another.

he different statistical estimators that are derived in this section

re then systematically based on all samples/users. In other words,

e do not make statistics as the average of the observable quan-

ities on large period of times, but instead we consider an event

or each user/sample, the time between two calls for instance, and

e compute the average of this event over all users/samples. We

ssume that the two-point processes are stationary. From the sta-

istical point of view, we assume that the process is stationary on

he interval of times where the statistics are computed. In the nu-

erical results, the statistics are then given for different periods

n the day. We also assume that there is at most one point of N BS 

n an interval of N call . It is thus seen as the movement of the user

ven if it may be composed in practice of several BS changes. The

mpact of this assumption on the results are discussed in the end

f the section. 

.1. Intensity 

The first quantity that is studied is the intensity of N BS , denoted

BS , i.e. the mean number of BS changes per unit time. We propose

n estimator ̂ λBS of this quantity. Let � be the set of samples (our

ata set). The samples in � are assumed to be independent. 

Our estimator is obtained through the application of Palm cal-

ulus. The points of N call (respectively N BS ) are denoted (T call 
i 

) i ∈ Z 
respectively (T BS 

i 
) i ∈ Z ), in ascending order, and where [ T call 

0 
, T call 

1 
]

respectively [ T BS 
0 

, T BS 
1 

] ) is the interval that contains the origin. We

pply the Neveu’s exchange formula ( [1] page 21) to the two-point

rocesses N BS and N call for a function f = 1 . We obtain: 

call = λBS E 

0 
N BS 

[∫ T BS 
1 

0 

N call (dx ) 

]
(1) 

E 

0 
N BS 

[ . ] is the Palm expectation with regard to the process N BS .

alm expectation, or Palm measure, may be seen as the probabil-

ty measure under the condition that there is a point of the point

rocess at the origin. The point process indexed under the expec-

ation notation E 

0 
N BS 

( N BS here) indicates which point process is
Time

Time

Time

.

.

.

.

.

Call through BS z

Points of the point 
process NBS

Tj+1
BS

bservable but the change of marks/BSs at the time calls (at points of N call ) allows 

s of N BS . 
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Table 1 

Results for the estimation of λBS . 

Hours λBS (s) λBS (h) Omega 

0–2 am 0 .0 0 058 2 .09 1 044 566 

2–4 am 0 .0 0 061 2 .19 265 693 

4–6 am 0 .0 0 061 2 .18 129 196 

6–8 am 0 .0 0 060 2 .17 215 682 

8–10 am 0 .0 0 058 2 .07 1 676 401 

10–12 am 0 .0 0 059 2 .11 6 899 027 

12–14 pm 0 .0 0 059 2 .14 9 543 073 

14–16 pm 0 .0 0 058 2 .10 10 545 188 

16–18 pm 0 .0 0 057 2 .07 8 899 166 

18–20 pm 0 .0 0 058 2 .07 8 409 011 

20–22 pm 0 .0 0 056 2 .01 7 574 970 

22–24 pm 0 .0 0 056 2 .01 4 058 205 
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1 As the standard deviation is unknown, it is given by 

√ 

1 
n 1 −1 

∑ n 1 
i =1 

(X i − X̄ 1 ) 2 

where X i are the samples. 
supposed to have a point at the origin. It is worth noting that

quantities under the classical and Palm expectation lead to differ-

ent values. For instance, E 

[
T BS 

1 

]
and E 

0 
N BS 

[
T BS 

1 

]
differs. E 

[
T BS 

1 

]
is the

time from the origin (an arbitrary time) to the next BS change. It

is thus the residual time to the next BS change. E 

0 
N BS 

[
T BS 

1 

]
is the

time between two BS changes. Indeed, under Palm expectation we

know that there is a point of N BS at 0 and we evaluate the time to

the next BS change T BS 
1 

. 

In Eq. (1) , remind that N call (.) is a counting measure, and∫ T BS 
1 

0 
N call (dx ) is thus equal to N call ([0 , T BS 

1 
]) . Under Palm expecta-

tion, 
∫ T BS 

1 
0 

N call (dx ) is thus the mean number of points of N call be-

tween two successive points of N BS . Consequently, this quantity can

be fully determined/estimated based on our samples as we do not

need the exact location of the points of N BS . For instance, in Fig. 8 ,

a sample of this quantity (for user 1) is the number of points of

N call between points T BS 
j 

and T BS 
j+1 

(equals to 4). The estimator is

then: 

̂ λBS = 

̂ λcall | �| ∑ 

N call ∈ �
N call ([ T BS 

i , T BS 
i +1 ]) 

(2)

where ̂ λcall is an estimator of λcall . 

Eq. (2) corresponds exactly to Eq. (1) , but wrote in a simpler

form. Here, we pick one interval of N BS for each sample. The value

of i does not matter and may be different from one sample to an-

other. Due to the stationarity constraint, we divide times of the day

to slots of 2 h. The estimation of λBS is then performed indepen-

dently for each slot. We take one sample for each user and each

day. Results are shown in Table 1 . The number of considered sam-

ples is shown in the last column of the table. With the constraint

of 2 h, all samples are not taken into account. Indeed, we consider

only samples with at least two movements, otherwise it is obvi-

ously impossible to apply the method. The results show that the

number of movements stays more or less constant during all days.

With the filter that we apply on the data set, the results tend to

show that, in average, a user moves rarely more than two times on

these slots. Clearly, our method leads to an over estimation of the

real intensity λBS . But, a classical method consisting in evaluating

the time between two movements with the same constraint on the

stationarity should lead exactly to the same problem. Moreover, in

our study, we do not have the exact time between two movements,

such an approach would consequently be impossible. 

6.2. Dependency test 

An important assumption to estimate the distribution of the

time between two successive points of N BS is the dependency be-

tween the two processes N BS and N call . A formal hypothesis test

is impossible to perform as N is not fully observable. Therefore,
BS 
e propose a simple test, based on the length of the intervals

 T call 
i 

, T call 
i +1 

] where the points of N BS are located, to infer the de-

endency between the two processes. 

According to Palm Calculus, if we pick a point X in IR indepen-

ently of a stationary point process, e.g. N call , this point will be

ikely located in a “big interval”. More precisely, the mean of the

nterval length [ T call 
i 

, T call 
i +1 

] where X is located will be greater than

he mean size of the interval of the point process ( 1 
λcall 

here). In-

uitively, as “big intervals” occupy more space, X is likely located

n one of them. For instance, with a Poisson point process the

ean interval length where X is located is two times greater than

he other intervals (in average). It is the famous Feller paradox

 [1] pages 33 and 295). As the process is stationary, pick a random

oint X or a fix point leads to the same results. By convenience

e consider the origin. The interval where the origin is located

s [ T call 
0 

, T call 
1 

] , and its mean length is equal to E [ T call 
1 

− T call 
0 

] =
 · E [ T call 

1 
] (consequence of the stationarity of the point process).

he mean length of this interval depends on the distribution of

he process, but it can be easily calculated with the Palm inversion

ormula ( [1] page 20). We give below the computation details but

t is a classical result of Palm calculus (see [31] for instance where

t is applied to a mobility study). In the first equation below, θ t 

s the shift operator. Here, it shifts the points of N call of a time t

meaning that N ◦ θx (C) = N(C − t) for an interval C in R , or more

ormally C in B). We get: 

 

[
T call 

1 

]
= λcall E 

0 
call 

[∫ T call 
1 

0 

T call 
1 ◦ θt dt 

]
(3)

= λcall E 

0 
N call 

[∫ T call 
1 

0 

(T call 
1 − t ) dt 

]
(4)

= 

λcall 

2 

E 

0 
N call 

[ (
T call 

1 

)2 
] 

(5)

If N BS is independent of N call , a point of N BS behaves as the

andom point X presented earlier or the origin. Therefore, if the

wo processes are independent the mean interval lengths (of N call )

here the points of N BS are located must equal to 2 · E [ T call 
1 

] . For-

ally, in case of independence, we get: 

 

[
T call 

1 − T call 
0 | N BS ([ T call 

0 , T call 
1 ]) > 0 

]
= E 

[
T call 

1 − T call 
0 

]
(6)

= λcall E 

0 
N call 

[ (
T call 

1 

)2 
] 

(7)

Let denote μ1 = E [ T call 
1 

− T call 
0 

| N BS ([ T call 
0 

, T call 
1 

]) > 0] and μ2 =
 

0 
N call 

[(T call 
1 

) 2 ] . We can use the confidence interval of these two

xpectations (both sides of Eq. (6) ) to accept the assumption on

ependency with a certain probability ( (1 − α) 2 in the proposed

ethod). With our assumptions (i.i.d. samples), a confidence inter-

al of μ1 at 1 − α is given by: 

X̄ 1 − z(α) 
S 1 √ 

n 1 

, X̄ 1 + z(α) 
S 1 √ 

n 1 

]
(8)

here X̄ 1 is the expectation evaluated from the samples (intervals

f N call where there was a BS change), S 1 is its standard deviation 

1 ,

 1 is the number of samples, and z ( α) depends on the parameter α
such that P (N ∈ [ −z(α) , z(α)]) = 1 − α where N follows a normal

istribution N (0 , 1) ). Obviously, the same holds for μ2 , but as we
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Table 2 

Results on the dependency test. 

Hours E 0 N call 
[ T call 

1 ] Movement interval E[ T call 
1 − T call 

0 ] Number of samples 

0–2 am 591 .79 942 .25 1324 .77 35058 

2–4 am 578 .03 923 .05 1377 .29 9280 

4–6 am 564 .49 1007 .60 1453 .25 4531 

6–8 am 565 .61 1073 .24 1515 .29 8445 

8–10 am 634 .54 1152 .25 1632 .98 62660 

10–12 am 719 .78 1252 .82 1797 .30 193054 

12–14 pm 727 .06 1277 .26 1825 .02 237929 

14–16 pm 718 .87 1275 .12 1816 .50 260823 

16–18 pm 716 .41 1298 .34 1827 .37 218267 

18–20 pm 715 .20 1264 .40 1810 .68 218915 

20–22 pm 687 .99 1242 .35 1741 .00 200104 

22–24 pm 655 .38 1128 .19 1628 .88 118539 
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Fig. 9. Case 1: the first point of T BS 
1 is in the interval [ T call 

2 , T call 
3 ] . The sample of T BS 

1 

is then uniformly distributed in this interval. 
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ave to consider λcall · μ2 instead, we get: 

λcall 

(
X̄ 2 − z(α) 

S 2 √ 

n 2 

)
, λcall 

(
X̄ 2 + z(α) 

S 2 √ 

n 2 

)]
(9) 

If the two intervals do not overlap then the probability that

he two quantities μ1 and λcall · μ2 are different is greater than

(1 − α) 2 . In other words, the probability that the two processes

re dependent is greater than (1 − α) 2 . Otherwise, we cannot con-

lude to dependence or independence. It is worth noting that these

wo quantities do not depend on the exact locations of the points

f N BS but only on the interval lengths of N call available from our

ata set. 

The results are shown in Table 2 . Before describing the results,

e give some elements on the method we followed. We consid-

red intervals of 2 h during the day to obtain intervals where

he two-point processes are assumed stationary. Each temporal

indow was processed independently. For each user, we draw

andomly one of the movements and we measured the interval

 T call 
i 

, T call 
i +1 

] where it lied. The result is the column “Movement in-

erval” in the table. Besides, we selected an interval [ T call 
i 

, T call 
i +1 

]

andomly chosen for each user and estimate these two first mo-

ents (compute as the average over all users). It leads to esti-

ators of E 0 
N call 

[ T call 
1 

] and E 0 
N call 

[(T call 
1 

) 2 ] , from which we deduce

[ T call 
1 

− T call 
0 

] (equal to two times Eq. (5) ). The selection of users

aking calls can have an impact only in case of correlation be-

ween the two point processes. It does not impact the result as

he test is only able to valid correlation. 

In Table 2 , we can observe, as expected, that user movement

appens in interval with a greater length in average with regard

o E 0 
N call 

[ T call 
1 

] . But, their mean lengths should equal to the 4 th col-

mn. We can observe a difference of approximately 30% between

hese two quantities. With the number of samples used in the dif-

erent computations, that are given in the last columns, the con-

dence intervals are close to 0 for all these estimators, and so

oes not explain the gap. According to the test presented above,

he two point processes are dependent with a probability of 0.9 as

= 0 . 05 . This dependency confirms the temporal correlations we

ave between mobility and the activity in Fig. 2 . A possible inter-

retation of this phenomena, is that mobile users may call before

 departure, at their arrival, or during the path, and consequently

re likely to call when they are in movement or just after/before

 movement. This result may present a bias as we do not know

he number of BS changes between two calls. Indeed, several BS

hanges may happen between two successive calls. Therefore, our

hoice of the intervals with a BS change would be different if the

umber of movements is very different from an interval to another.

ntuitively, in this case, we should more likely choose an interval

ith a great number of movements than an interval with only a

mall one. 
.3. Distribution 

In this section, we describe a method to obtain estimations of

he distribution of N BS . More precisely, we assess the cumulative

istribution function (CDF) of T BS 
1 

under the classical probability

easure ( P 

(
T BS 

1 
≤ x 

)
) and Palm measure ( P 

0 
N BS 

(
T BS 

1 
≤ x 

)
). Under the

alm measure, it describes the distribution of the time between

wo successive movements. Under the classical measure, it is the

ime to the next movement: given a user at an instant t , it is the

ime to the next movement. 

We do know the intervals where the points of N BS are dis-

ributed. In each of these intervals, we draw the point N BS uni-

ormly. It would correspond to the real distribution in case of in-

ependence of the two processes. But, as we have seen in the pre-

ious section, independence does not hold here and our method is

hus not exact. 

From these samples we compute the empirical estimator of

 

(
T BS 

1 
< u 

)
. 

We detail below the method. A set of examples is given in

igs. 9 and 10 . 

The method: 

• We set a common time t as the origin for all our samples. It is

chosen arbitrarily and independently of the two processes. It is

denoted O in the figures. 

• To collect samples of points T BS 
1 

, we proceed as follows for each

sample/user: 

– If the interval of N call that contains the first point of N BS is

[ T call 
i 

, T call 
i +1 

] with i > 0, then we draw our sample uniformly

in this interval. This case is illustrated in Fig. 9 (Case 1). 

– If the interval of N call that contains the origin, [ T call 
0 

, T call 
1 

] ,

hosts a point of N BS , then we draw a point uniformly in

[ T call 
0 

, T call 
1 

] . If it belongs to [0 , T call 
1 

] then we select this point

as our sample ( Fig. 10 – Case 2(a)). Otherwise, the point

that is obtained is T BS 
0 

and not T BS 
1 

. Consequently, we con-

sider the next interval of N call ( [ T call 
i 

, T call 
i +1 

] with i > 0) that



52 Y. Leo et al. / Computer Communications 95 (2016) 43–53 

Fig. 10. Case 2: there is a point of N BS in the interval [ T call 
0 , T call 

1 ] . We draw a point 

of N BS uniformly in this interval. It leads to two sub-cases: (Case 2(a)) if the point 

is in [ O, T call 
1 ] , then we consider it as our sample of T BS 

1 , (Case 2(b)) if the point is 

in [ T call 
0 , O ] then it corresponds to T BS 

0 , so we look for the next interval that hosts 

a point of N BS ( [ T call 
3 , T call 

4 ] in the figure) and we distribute uniformly our sample of 

T BS 
1 in this interval. 

Fig. 11. ICDF of T BS 
1 . 
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contains a point of N BS . Our sample is then the point uni-

formly distributed in this interval ( Fig. 10 – Case 2(b)). 

• From the collected samples, we calculate the empirical distri-

bution of T BS 
1 

i.e. P 

(
T BS 

1 
≤ x 

)
. 

We also consider a lower and upper bound on the values of the

samples that allows to bound the real distribution of T BS 
1 

. For the

lower bound, we consider for each sample the beginning of the

interval [ T call 
i 

, T call 
i +1 

] , thus T call 
i 

. For the upper bound we consider

T call 
i +1 

. 

The inverse cumulative distribution function (ICDF) is shown in

Fig. 11 . The ICDF under the classical expectation, shows that user

movements occurs between 0 and approximately 5400 s. The pro-

posed estimation thus offer an interesting trade-off between the

two bounds. The two bounds do not present negligible differences

with the approximated distribution. It can reach up a difference of

0.2 for the lower bound, and 0.15 for the upper bound. 

7. Conclusion 

This paper presented an analysis of calls in a cellular network

from a CDR trace. In the first part, we assess the statistical proper-

ties of these calls. We exhibit a cyclo-stationarity of the number of

calls per hour, with a lightweight different behavior in the week-

end. Also, the distribution obtained for call durations and inter-

arrivals have shown that the classical exponential distribution still

fit to the empirical one. It confirms the classical assumptions on
hone traffic. Moreover, our study gives example of current loads

bserved in cellular networks that can be considered as input in

ueuing models. 

In the second part, we have proposed a method to study user

ovements using Palm calculus. This theory offers a formal math-

matical framework to obtain estimator on user movements. Con-

equently, we have proposed methods to estimate the intensity

f user movements, a dependency test that allowed us to check

f calls and movements are correlated, and a method to generate

amples of user movements. A required property to apply this the-

ry is that the considered processes must be stationary. As it is

learly not the case for our data set, we had to consider range of

 h. It led to a proportion of samples with no movements that

ould not be taken into account, and thus an overestimation of

ser movements. Also, for moving users, the proposed dependency

est seems to show that their movements are correlated to their

alls. 

Results of our study may be used in different ways. It can help

o consider practical parameters in simulations and models. Re-

ults on the dependency between calls and movements still need

o be improved. A more detailed characterization of this depen-

ency could help to propose models able to generate joint calls

nd movements distribution. Also, we point out that our results

n the call durations contain a lot of information by its variability

hrough time and users. This quantity can help to improve mod-

ls that describe social relationship between users. Taking advan-

age of this parameter can lead to identify people, define con-

acts between phone users, detect communities or predict links.

 more fundamental work could consist in extending this study

o non-stationary point process. The question is: may we rely on

he cyclo-stationarity of the processes to derive equivalent estima-

ors from Palm Calculus but applied to the full periods (complete

eeks, months, or year). 
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