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Cellular technologies are evolving quickly to constantly adapt to new usage and tolerate the load induced
by the increasing number of phone applications. Understanding the mobile traffic is thus crucial to refine
models and improve experiments. In this context, one has to understand the temporal activity of a user
and the user movements. At the user scale, the usage is not only defined by the amount of calls but also
by the user’s mobility. At a higher level, the base stations have a key role on the quality of service. In this
paper, we analyze a very large Call Detail Records (CDR) over 12 months in Mexico. It contains 8 millions
users and 5 billions of call events. Our first contribution is the study call duration and inter-arrival time
parameters. Then, we assess user movements between consecutive calls (switching from a station to an-
other one). Our study suggests that user mobility is pretty dependent on user activity. Furthermore, we
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show properties of the inter-call mobility by making an analysis of the call distribution.
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1. Introduction

With the constant evolution of mobile technologies and digital
networks, such as new generation of smartphones, and new
applications, usage of cellular networks tends to change deeply.
The analysis of phone calls from real logs is thus fundamental,
both from phone operators and from other stakeholders’ points
of view. For the operators, it gives insights on the network usage
and load, and consequently on possible dimensioning issues. It
also allows to adapt or propose services according to the user
trends. More generally, mobile phone datasets allow to derive a
statistical analysis of human activities at a fine level of details.
This unprecedented flow of continuous information on human
activity represents a tremendous opportunity for research and
real-world applications. Indeed, models or simulations that are
used to study dimension cellular networks, as queuing theory for
instance, need to take into account the recent evolution of net-
works load and may progress by considering our new observations
that concern the call duration and the inter-arrivals (time between
two successive calls), users mobility, etc.
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In the context of a collaboration with Grandata Labs that lever-
ages advanced research in Human Dynamics (the application of
“big data” to social relationships and human behavior) to identify
market trends and predict customer actions, we have access to the
logs for one complete year of all calls and SMS from a top-3 Mex-
ican wireless service provider with more than seven million sub-
scribers. It represents 90 millions of calls. The availability of mo-
bile phone datasets has opened the possibility to improve our un-
derstanding of how humans communicate, socialize, move around
cities, mobilize, etc. This project plans to study these logs through
different dimensions: technological, sociological and economical.

2. Contributions

In this paper, we focus on the analysis of this trace from the
network/operator point of view. Contributions can be summarized
through three items.

First, we perform a macroscopic analysis of our dataset. We
show that activity, computed here as the number of calls per hour,
varies at different scales. When the activity is seen as a signal, an
empirical mode decomposition (EMD) allows us to derive its dif-
ferent cyclo-stationary components.

We assess phone usage and traffic properties through three dif-
ferent quantities: load, inter-arrival time between two calls and
duration of a call. They are studied through two point of views:
globally i.e. considering phone calls in the whole Mexico city, and
per base station. For the load, we establish a landscape of the
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usage of the Base Stations (BS). For the inter-arrival and duration
distributions, we confirm that the statistical traffic properties are
the same from a Base Station to another, and also at the network
scale. We compare these distributions to the classical distribution
that is systematically considered in the models, the exponential
law, and discuss its pertinence. It appears these very recent logs
(2014) still leads to the classical exponential distribution at both
scale (globally and on particular BS). For call duration, the distri-
bution tail (the part that impacts performances in queuing system)
fits by an exponential law.

The last part of this paper is an analysis of user movements.
This contribution is twofold. We model calls and users movement
through two point processes. Whereas the first one is perfectly de-
scribed by our dataset, the second one is unknown, except that a
node movement is detected at the time of a call. Indeed, when a
user changes of base stations, it does not appear explicitly in the
logs, but is detected only when a call occurs on the new BS. We
show that for this kind of problems, application of Palm calculus
theory [1,2] offers relevant estimators for the second process (de-
scribing nodes movement). The use of this mathematical tool to
the analysis of dataset is, to our knowledge, original. It applies to
data that can be described with stationary point processes. In our
context, it allows to derive: (i) an estimator of the number of calls
per time unit, (ii) a simple test on the independence between the
two processes (calls and movements), and (iii) an estimation of the
movement distribution. It highlights the benefits of Palm calculus
for data analysis to offer a formal framework to derive interesting
and practical estimators even in presence of partially observable
data. Numerical results based on this framework show that users
mobility is correlated to the calls.

The paper is organized as follows. In Section 4, we describe our
data set: available information, period of times, number of users,
etc. In Section 5, we present the different results on the calls in
time and space. Section 6 proposes a method to infer the statistical
properties of the user movements, and presents the corresponding
results. We conclude in Section 7.

3. Related work

The study of mobile phone data has been an active field during
these last years. Plenty of topics has been covered such as mobile
phone traffic and human mobility [3,4]. In our study as in [5], we
have the opportunity to analyze non-sparsified CDRs that repre-
sents a 1-year nationwide data set presented in [6].

The amount of mobile phone traffic has an overriding impact
on the quality of service. The understanding of time evolution and
spatial arrangement of the activity, studied in [7-9], helps to en-
hance the network infrastructure and its capacity. As an example,
the traffic analysis brings around a set of tools to detect specific
local events and anomalies [10,11] that commonly induce over-
load [12]. Predict and adapt protocols to respond to high activity
periods is a substantial benefit [13].

The traffic is the result of a causal chain where users and
the way they communicate to each other are the starting point.
From CDRs, it is possible to understand better the human behav-
ior and predict the traffic. For instance, [14] defines categories
of mobile call profiles and classifies network usages accordingly
and [15] makes the links between user phone usage and personal
behavior. To our knowledge, none of these studies consider the call
duration as an information pool whereas it has a great impact on
the load and on the intensity of social relations.

Complementarly, many studies focus on human mobility and
tend to characterize, predict and model spatial individual mo-
bility [8,16-18]. As user mobility seems to be unique [19], we
can now predict next moves according to the mobility foot-
print. However, these works presume a precise knowledge of the

switching from a spatial point to a new one. Whereas, in many
CDRs, the user movement times are unknown, we suggest in
this paper that user movement times and call events are pretty
dependent.

In the paper [20], these authors study the user movement
between two calls. This fine study on a small amount of users
(n =56) gives us insights about the inter-call mobility (ICM) of
users. The ICM model represents a spatio-temporal probability
distribution of users position in space and time between two con-
secutive communication records at distinct places. Here, instead
of considering the whole trajectories, we are estimating the user
movement distribution from the call distribution based on the
activity of around 7.7 millions of users during one year.

4. Data set description

For this analysis, we use a CDR data set from a major mobile
operator in Mexico. This CDR trace contains one year of geolo-
calized phone calls all over the country of Mexico. The dataset is
anonymized. For each phone call, we have the timestamp in sec-
ond, a phone Id of the subscriber originating the call, the phone
Id of the user receiving the call, the call duration in second, and
the BS of the telco company that routed the call (incoming or out-
going). For 77% of call records, there is one location which deter-
mines the location of the phone user belonging to the telco com-
pany (either the callee or the caller). When both caller and callee
are clients of the telco company, two locations are provided in our
trace, one that notify that the caller is calling the callee and the
other indicating that the callee is receiving a call from the caller.
The trace is starting from the January 1, 2014 and ending on the
December 31, 2014. It contains the whole 2014 year. For this pe-
riod, we have more than 4.75 billions of calls. These geolocalized
calls represent around 6% of global internal calls in the country
of Mexico. As in our study we focus on the user movements, we
will mostly consider the geolocalized calls. We can notice in Fig. 1,
the missing locations have the same activity as the ratio of geolo-
calized calls is quite constantover time. Therefore, it should not
have any impact on our results. This subset of calls is represent-
ing the activity of 7,700,208 telco users during one year. In Fig. 1,
we note that there are the same number of incoming and ougoing
calls.

As already shown in [21,22], the mobile activity varies through
time at several scales. During the day (from midday to 8 pm), the
activity is greater than during the night. The number of calls as
function of the hours of the day (Fig. 2) points out the typical
period of lower activity during the night and greater activity dur-
ing the day. Although the number of calls varies during the day, it
varies between different days too. For instance, the activity during
weekdays is greater than during the week-end. The peak is reached
on Friday at 6 pm just after the end of the work.

As we can notice in Fig. 2 (right), a mobile user tends to call
more times in average than a static one. The mobility, correspond-
ing to the average number of BS explored within half an hour, and
the activity (left) are well correlated. This quick observation will
be detailed in Section 6.

If we consider the activity as a signal, we can observe daily
cyclo-stationarity. People are organized on a daily base of 24 h
such that the activity signal will have statistical properties that
vary cyclically with time and can be viewed as multiple inter-
leaved stationary processes. To show this intuitive point, an Em-
pirical Mode Decomposition (EMD) [23] is performed on the ac-
tivity signal, the number of calls per hour during 51 days. The
EMD allows to represent the non-stationary signal as sum of zero-
means Intrinsic Mode Function (IMF) and one residue. Fig. 3 gives
the decomposition of the global call activity in high and low fre-
quencies. The IMF 2 to 5 clearly gives a daily periodic signal
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Fig. 2. The number of calls (left) and the number of active users (middle) during the 1-year period as function of the hours of the day. We note a period of lower activity
during the night and higher activity during the day. The peak is reached at 2 pm. (right) The mobility defined as the average number of base stations reached within less

than 30 min according to the hour of the day.

(a spectral analysis also gives an harmonic decomposition in days
of the signal) which validate the cyclo-stationarity of the activity
signal and the fact that globally, people are used to call or not at
the same moment of the day. The high frequency IMF 1 is also
plotted on Fig. 3. We plot in red the mean of the residual. The sig-
nal is clearly oscillating around the mean in a compact envelope
with few extra peaks of activity. The low frequency signal is use-
ful when one tends to detect special events and anomalies on the
activity.

In a mobile data trace, a lot of measures are quite heteroge-
neous like the number of contacts, the number of calls and the
time between two calls. We show the distribution of the number
of calls per day (Fig. 4). We note that around 25% of the users have
more than two calls per day whereas 25% of users have less than
10 calls per week. Running a user movement study on a very long
period of time will not make sense in such conditions of strong
heterogeneity. Indeed, it is impossible to determine rather if the
user change precisely his location during a long inactive period.
We do need a weak hypothesis on the stationarity of the total
calls signal. As we want to catch the movements of people dur-
ing the day, we decided to cut all the signal (one year long) by
slots of 2 h. During each 2-h period, we consider that the signal is
stationary.

5. Call analysis

In the two next sections, we analyze inter-arrival times between
calls and call durations. These two quantities are the main input of
queuing theory. The inter-arrivals describe the traffic nature, i.e.,
the distribution of the clients arriving in the queue. The duration
of a call is related to the service time of a client once it accesses
to a resource. In our context, a resource is a couple slot-frequency
or a set of resource blocks depending on the generation of cellular
network we consider. In most of the queuing models, both inter-
arrivals and call durations are supposed to be independently and
exponentially distributed, leading to the famous M/M/. queues. The
reader can refer to [24], for a deeper presentation of queuing mod-
els applied to cellular networks. This assumption on the exponen-
tial distribution is common when considering phones traffic and
call durations [25,26]. For the call duration, there is a discussion
about the best function that fits the distribution: a log-normal [27],
an exponential [28] or even a semi-heavy tail [29]. Indeed, the first
interval of the distribution is known as non-exponential, because
call durations are usually lasting more than very few seconds. But,
the exponential assumption still offers a good approach as it is the
tail distribution, “the big clients”, that impacts the performance of
the system.
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5.1. Inter-arrivals on a base station

When a user is calling someone, the origin and the destination
are linked to a single BS. The attached BS are the first and last
steps of the routing. In the trace, we only have the coordinates of
the attached BS of the origin or the destination. As we miss many
non-geolocalized calls, the activity of a BS is underestimated by a
factor around 10 and the inter-arrival between two calls is overes-
timated. Yet, the shape of the distribution may be the same.

In Fig. 53, we plot the inverse cumulative distribution function
of the inter-arrivals. It corresponds to the time between two suc-
cessive calls to a same BS. The distribution at the network scale,
that gathers all geolocalized calls, is plotted in Fig. 5a. It shows that

the inter-arrivals range from O to several hours. These very high
values of inter-arrivals could correspond to periods where a BS is
switched off (for maintenance or other reasons). Also, the figure
shows that 99% of the samples are less than 180 s, and 80% less
than 21 s. By considering all samples, we get very large range of
values for which many have a small inter-arrivals. It corresponds to
peaks of traffic during the day. On the opposite, great inter-arrivals
are due to the night traffic. Nevertheless, these statistics usually
help to dimension the network, which is usually performed with
regard to the peak of traffic. We are thus interested in the traffic
nature when the network is loaded. For these reasons, we perform
the same statistic evaluation for specific BS and time ranges. We
considered three particular BS at the peak of traffic. We have first
ordered all the BS as function of their load and choose three BS (BS
numbered 1175, 157 and 100) that are respectively at 60%, 70%, and
90% in this classification. The distributions are shown in Fig. 5b. For
these distributions, at least 80% of the samples are less than 15 s
(12 times less than the case with all samples). The three distribu-
tions have been fitted with an exponential law, represented by the
dotted lines in Fig. 5c. Even if it does not match exactly, the expo-
nential is very close to these distributions. The parameters of the
exponential are 0.14, 0.19, and 0.21 and correspond to the mean
number of calls per second. The standard deviation errors of the
fit is respectively 0.0005, 0.0009 and 0.0007. The assumption on
Poisson traffic is thus verified in our case.

5.2. Call duration

Here, we propose a study on the duration of a call. For each call
for which the destination replied, there is a duration in second. The
duration of a call is one of the parameter that has a major impact
on the load [30].
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by 1 s, we can so take the log as all values are strictly positive.

We plot this distribution from our trace, by extracting a sin-
gle duration of a random call per user. Each user counts only for
one in the distribution 6. Unfortunately, in our trace, a long call
is stored in several 10-min calls. So, the distribution is ending at
10 min because the end of the tail is unknown. Apart from that,
the ratio of long calls is quite small and the 10-min sessions have
a very small impact on the average and quartile results. We also
noticed that there are more values when the number of seconds
corresponds to a minute like 60s, 120s,...It is probably due to ex-
ternal artifacts like per-minute billing. The peak is reached for 34 s.
The average duration of a call is 121 s and 25% of calls last more
than 30 s whereas 75% last less than 2 min. All in all, 50% of calls
take between 30 s and 2 min. In Fig. 6a, the fit of the distribu-
tion with a log-normal function is quite good, the goodness of fit
is R = 0.82. The log-normal presents a gap with the empirical dis-
tribution for small values and for values in the tail. In Fig. 6b, the
fit of the distribution tail by an exponential distribution is very
good as R? = 0.99. The residual between the exponential law and
the empirical law is very small and confirms that the exponential
distribution models perfectly the distribution tail as many studies
already noticed it. This long tail induces an heterogeneity for the
duration parameter, many durations are around 30 s and 2 min but
some calls are still quite long.

In Fig. 7, the time is divided into 12 slots of 2 h each and the
average duration is computed. From 6 am-8 am to 0 am-2 am,
the average of the call duration is increasing. As the day is go-
ing, people tends to exchange more during a voice communica-

tion. Then during the night (2 am to 6 am) people who answer
do not take the time for long conversations. The shortest durations
are recorded between 6am and 8am. According to parts of the day,
the duration is changing and the average can double from a slot
time to another. This preliminary study on duration points out the
fact that duration is not stationary and homogeneous but contains
a lot of information that is useful to refine models or adapt per-
formance of telecom companies. These starting observations may
help to refine models and improve performance.

6. User movement analysis

Data collected describes sent and received calls of users. For
each call, the localization of the BS associated to the user is known.
It allows us to know the BS location at the time the calls are made.
Based on this knowledge, we can study the statistical properties of
the BS changes, ie. the different times at which a user is associ-
ated to a new BS. It reflects users mobility between two calls and
should be interesting for the telecoms operator as it corresponds to
user movements that it has to manage. Like in many CDRs, these
times are only partially observable: we are able to detect that be-
tween two successive calls the user is not bound to the same BS
but we do not know when it does happen exactly between these
two calls.

In this section, we propose two estimators. The first one de-
scribes the mean number of user movements per time unit, and
the second one is related to the cumulative distribution function
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(CDF) of the time between user movements. Also, we propose a
simple test that allows us to check if the two processes, calls and
user movements, are dependent. The different computations and
proofs rely on Palm calculus. This mathematical framework offers
a set of tools on stationary point processes. The reader can refer
to [1] for the definition and tools of Palm Calculus in IR, or [2] for
a more pedagogic introduction and its application in IR2. As it will
be shown, Palm calculus is particularly adapted to this study.

A stochastic point process is a random variable. It can be seen
as an ordered set of points distributed in R. The observation of
a set of events occurring at different times can thus be modeled
through a stochastic point process. Therefore, calls and user move-

ments can be modeled through two-point processes. They are rep-
resented in Fig. 8. The first point process is denoted N,q;. A sample
represents the time of the calls for a user. At the time of a call,
we know the BS which the user is bound. Formally, it can be seen
as a mark associated to the point process Ny. In Fig. 8, we used
different patterns to represent the points of N, and its associ-
ated marks: a given pattern corresponding to a given BS/mark. For
instance, when the user 1 is bound to BS x, the points/calls are de-
picted through black discs. When the user is bound to BS y, it is
black ring, etc. A user movement is thus detected when the mark
of Ng changes. This marked point process is an exact representa-
tion/model of the data set in our possession.



Y. Leo et al./Computer Communications 95 (2016) 43-53

200

150

100

50

Average Duration (seconds)

00 2 4 6 8 10 12 14 16 18 20 22

Hours of the day

Fig. 7. Average for the whole year of duration calls for each 2 h slot

The second process is Nps and is depicted through the verti-
cal arrows in the figure. It represents a movement of the user, a
change of the BS, between two calls. Our data set does not describe
Nps, but the marked process Ny allows us to determine between
which calls there was a BS change, or equivalently between which
points of Ny there is a point of Ngs. For instance, for user 1 in
Fig. 8, we observe a change of BS, from BS x to BS y, between the
points/calls T and T Consequently, we infer the presence of

a point of Ngs between the points T and T,

Formally, Ngs and N4 are random variables taking their values
in the counting measures set on (R, B) (where B denotes the Borel
o-field of IR). We will use this definition in the different formulas,
but as previously mentioned, it is more convenient to see a sample
as a set of points (the support of the counting measure). A sample
of Ny and Ngs can thus be seen as a set of points in IR, and cor-
respond to the different time calls (N.q;) and BS changes (Ngs) for
a given user (a sample = a user).

A rapid analysis of the data showed that the process N is
not ergodic, i.e., statisticc made on a given sample do not allow
to obtain convergent estimators. For instance, the mean number
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of calls per time unit are very different from a user to another.
The different statistical estimators that are derived in this section
are then systematically based on all samples/users. In other words,
we do not make statistics as the average of the observable quan-
tities on large period of times, but instead we consider an event
for each user/sample, the time between two calls for instance, and
we compute the average of this event over all users/samples. We
assume that the two-point processes are stationary. From the sta-
tistical point of view, we assume that the process is stationary on
the interval of times where the statistics are computed. In the nu-
merical results, the statistics are then given for different periods
in the day. We also assume that there is at most one point of Npg
in an interval of N. It is thus seen as the movement of the user
even if it may be composed in practice of several BS changes. The
impact of this assumption on the results are discussed in the end
of the section.

6.1. Intensity

The first quantity that is studied is the intensity of Nps, denoted
Apgs, L.e. the mean number of BS changes per unit time. We propose
an estimator Aps of this quantity. Let 2 be the set of samples (our
data set). The samples in 2 are assumed to be independent.

Our estimator is obtained through the application of Palm cal-
culus. The points of N (respectively Ngs) are denoted (T,-C“”)iez
(respectively (TF5);.;), in ascending order, and where [T§e!!, T¢el!]
(respectively [TES, TB5]) is the interval that contains the origin. We
apply the Neveu’s exchange formula ([1] page 21) to the two-point
processes Ngs and Ny for a function f = 1. We obtain:

T]BS
Acail = MasER, |: /0 Neay (dx)]

]E?\,BS[.] is the Palm expectation with regard to the process Ngs.
Palm expectation, or Palm measure, may be seen as the probabil-
ity measure under the condition that there is a point of the point
process at the origin. The point process indexed under the expec-
tation notation IE%BS (Ngs here) indicates which point process is

(1

[ 2 N Wl R :
o 0eo Foints of the point

A Aoo Process Ney,

Points of the point
process Ngg
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Time
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Fig. 8. Description of the two-point processes N, and Ngs. The point process Nps is unobservable but the change of marks/BSs at the time calls (at points of Ny) allows
us to know the intervals of N; where they are located and to derive statistical properties of Nps.
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Table 1

Results for the estimation of Ags.
Hours Ags (s) Aps (h)  Omega
0-2 am 0.00058  2.09 1 044 566
2-4 am 0.00061 219 265 693
4-6 am 0.00061 218 129 196
6-8 am 0.00060 217 215 682
8-10 am 0.00058  2.07 1 676 401
10-12 am 0.00059 211 6 899 027
12-14 pm  0.00059 214 9 543 073
14-16 pm  0.00058  2.10 10 545 188
16-18 pm 0.00057  2.07 8 899 166
18-20 pm  0.00058  2.07 8 409 011
20-22 pm  0.00056  2.01 7 574 970
22-24 pm  0.00056  2.01 4 058 205

supposed to have a point at the origin. It is worth noting that
quantities under the classical and Palm expectation lead to differ-
ent values. For instance, E[TF] and ER, [TF] differs. E[TFS] is the
time from the origin (an arbitrary time) to the next BS change. It
is thus the residual time to the next BS change. Ef [TFS] is the
time between two BS changes. Indeed, under Palm expectation we
know that there is a point of Nps at 0 and we evaluate the time to
the next BS change TP,

In Eq. (1), remind that Ny(.) is a counting measure, and

S

B
N (dx) is thus equal to N, ([0, T5S]). Under Palm expecta-
fo call q call 1 p

tion, fOTlBS N_g (dx) is thus the mean number of points of Ny be-
tween two successive points of Ngs. Consequently, this quantity can
be fully determined/estimated based on our samples as we do not
need the exact location of the points of Ngs. For instance, in Fig. 8,
a sample of this quantity (for user 1) is the number of points of
Ny between points TjBS and T]B+51 (equals to 4). The estimator is
then:

ol heatl 2|
Z Ncall([’E‘Bss Tlis1])

Nean €2

(2)

where );;, is an estimator of A y;.

Eq. (2) corresponds exactly to Eq. (1), but wrote in a simpler
form. Here, we pick one interval of Ngs for each sample. The value
of i does not matter and may be different from one sample to an-
other. Due to the stationarity constraint, we divide times of the day
to slots of 2 h. The estimation of Ags is then performed indepen-
dently for each slot. We take one sample for each user and each
day. Results are shown in Table 1. The number of considered sam-
ples is shown in the last column of the table. With the constraint
of 2 h, all samples are not taken into account. Indeed, we consider
only samples with at least two movements, otherwise it is obvi-
ously impossible to apply the method. The results show that the
number of movements stays more or less constant during all days.
With the filter that we apply on the data set, the results tend to
show that, in average, a user moves rarely more than two times on
these slots. Clearly, our method leads to an over estimation of the
real intensity Ags. But, a classical method consisting in evaluating
the time between two movements with the same constraint on the
stationarity should lead exactly to the same problem. Moreover, in
our study, we do not have the exact time between two movements,
such an approach would consequently be impossible.

6.2. Dependency test

An important assumption to estimate the distribution of the
time between two successive points of Ngs is the dependency be-
tween the two processes Ngs and N . A formal hypothesis test
is impossible to perform as Ngs is not fully observable. Therefore,

we propose a simple test, based on the length of the intervals
[Teal, Tall] where the points of Ngs are located, to infer the de-
pendency between the two processes.

According to Palm Calculus, if we pick a point X in IR indepen-
dently of a stationary point process, e.g. Ny, this point will be
likely located in a “big interval”. More precisely, the mean of the
interval length [T, T<!] where X is located will be greater than

the mean size of the interval of the point process (ﬁ here). In-

tuitively, as “big intervals” occupy more space, X is lciakely located
in one of them. For instance, with a Poisson point process the
mean interval length where X is located is two times greater than
the other intervals (in average). It is the famous Feller paradox
( [1] pages 33 and 295). As the process is stationary, pick a random
point X or a fix point leads to the same results. By convenience
we consider the origin. The interval where the origin is located
is [Tge!, T, and its mean length is equal to E[Tfa! — T¢el] =
Z-E[Tf“”] (consequence of the stationarity of the point process).
The mean length of this interval depends on the distribution of
the process, but it can be easily calculated with the Palm inversion
formula ([1] page 20). We give below the computation details but
it is a classical result of Palm calculus (see [31] for instance where
it is applied to a mobility study). In the first equation below, 6
is the shift operator. Here, it shifts the points of N, of a time ¢
(meaning that N o 64(C) = N(C —t) for an interval C in R, or more
formally C in B). We get:

TlcaH
E[T"] = AcarBly [ [0 T o 9[dti| 3)
Tlcall
= )\.CG”E%CH” |:/(; (T{iall _ t)dti| (4)
Acall 2
= C2a IE“Io\lctllll:(TlCﬂ”) :I (5)

If Nps is independent of N.y, a point of Nps behaves as the
random point X presented earlier or the origin. Therefore, if the
two processes are independent the mean interval lengths (of Ny)
where the points of Ngs are located must equal to 2 - IE[T{“” ]. For-
mally, in case of independence, we get:

E[T]call _ T()Ca”|N35([Tocall, T]call]) - 0] — E[Tlcall _ Tocall] (6)

2
= haih, [ (T)] @)

Let denote puq = E[Tf — T |Ngg ([TSO, TA!]) > 0] and pp =
IE,Q,CH[I[(T{””)zl. We can use the confidence interval of these two
expectations (both sides of Eq. (6)) to accept the assumption on
dependency with a certain probability ((1 —«)? in the proposed
method). With our assumptions (i.i.d. samples), a confidence inter-
val of w1 at 1 — « is given by:

; S1 ¢ 51

|:X1 Z(a)ﬁ,xl+2(a)m] (8)
where X; is the expectation evaluated from the samples (intervals
of Ny where there was a BS change), S; is its standard deviation’,
ny is the number of samples, and z(«) depends on the parameter «
(such that P(N € [-z(«),z(«@)]) =1 — o where N follows a normal
distribution A/(0, 1)). Obviously, the same holds for u,, but as we

T As the standard deviation is unknown, it is given by Loym (X —X1)2

-1 i=

where X; are the samples.



Y. Leo et al./Computer Communications 95 (2016) 43-53 51

Table 2
Results on the dependency test.

Hours Eg_ [Tf"]  Movement interval  E[T{*" —Tg®']  Number of samples
0-2 am 591.79 942.25 1324.77 35058
2-4 am 578.03 923.05 1377.29 9280
4-6 am 564.49 1007.60 1453.25 4531
6-8 am 565.61 1073.24 1515.29 8445
8-10 am 634.54 1152.25 1632.98 62660
10-12 am  719.78 1252.82 1797.30 193054
12-14 pm  727.06 1277.26 1825.02 237929
14-16 pm  718.87 1275.12 1816.50 260823
16-18 pm  716.41 1298.34 1827.37 218267
18-20 pm  715.20 1264.40 1810.68 218915
20-22 pm  687.99 124235 1741.00 200104
22-24 pm 65538 1128.19 1628.88 118539
have to consider Ay - instead, we get:
call * M2 & Case 1 The sample in our data set
Toea! T,eall  Tcall
(. S { 52 4—00—)—.1—.2—9—9—.
[}"Cﬂll (XZ - Z(a) \/@ s )\'Cull XZ + Z((X) \/TI»Z (9) o Tl Tl Time
. e BS
If the two intervals do not overlap then the probability that S SMERE T 1‘;5
the two quantities st and A, - (4 are different is greater than To! T T
(1 —a)2. In other words, the probability that the two processes — o . T Tel  Time

are dependent is greater than (1 — )2, Otherwise, we cannot con-
clude to dependence or independence. It is worth noting that these
two quantities do not depend on the exact locations of the points
of Ngs but only on the interval lengths of Ny available from our
data set.

The results are shown in Table 2. Before describing the results,
we give some elements on the method we followed. We consid-
ered intervals of 2 h during the day to obtain intervals where
the two-point processes are assumed stationary. Each temporal
window was processed independently. For each user, we draw
randomly one of the movements and we measured the interval
[Teell, T<l] where it lied. The result is the column “Movement in-
terval” in the table. Besides, we selected an interval [T, T<ll]
randomly chosen for each user and estimate these two first mo-
ments (compute as the average over all users). It leads to esti-
mators of E,?,m”[T{“”] and E,?,m”[(Tfa”)z], from which we deduce

E[T{e! — T (equal to two times Eq. (5)). The selection of users
making calls can have an impact only in case of correlation be-
tween the two point processes. It does not impact the result as
the test is only able to valid correlation.

In Table 2, we can observe, as expected, that user movement
happens in interval with a greater length in average with regard
to E,?,Cﬂ”[Tl“’”]. But, their mean lengths should equal to the 4th col-
umn. We can observe a difference of approximately 30% between
these two quantities. With the number of samples used in the dif-
ferent computations, that are given in the last columns, the con-
fidence intervals are close to O for all these estimators, and so
does not explain the gap. According to the test presented above,
the two point processes are dependent with a probability of 0.9 as
o = 0.05. This dependency confirms the temporal correlations we
have between mobility and the activity in Fig. 2. A possible inter-
pretation of this phenomena, is that mobile users may call before
a departure, at their arrival, or during the path, and consequently
are likely to call when they are in movement or just after/before
a movement. This result may present a bias as we do not know
the number of BS changes between two calls. Indeed, several BS
changes may happen between two successive calls. Therefore, our
choice of the intervals with a BS change would be different if the
number of movements is very different from an interval to another.
Intuitively, in this case, we should more likely choose an interval
with a great number of movements than an interval with only a
small one.

Our sample of T,BS

Fig. 9. Case 1: the first point of TP is in the interval [T, T{®']. The sample of TF®
is then uniformly distributed in this interval.

6.3. Distribution

In this section, we describe a method to obtain estimations of
the distribution of Ngs. More precisely, we assess the cumulative
distribution function (CDF) of TlBs under the classical probability
measure (P(TP < x)) and Palm measure (IP’,Q,BS (TBS < x)). Under the
Palm measure, it describes the distribution of the time between
two successive movements. Under the classical measure, it is the
time to the next movement: given a user at an instant ¢, it is the
time to the next movement.

We do know the intervals where the points of Nps are dis-
tributed. In each of these intervals, we draw the point Nps uni-
formly. It would correspond to the real distribution in case of in-
dependence of the two processes. But, as we have seen in the pre-
vious section, independence does not hold here and our method is
thus not exact.

From these samples we compute the empirical estimator of
IP’(TIBS < u).

We detail below the method. A set of examples is given in
Figs. 9 and 10.

The method:

+ We set a common time t as the origin for all our samples. It is
chosen arbitrarily and independently of the two processes. It is
denoted O in the figures.

« To collect samples of points TlBS, we proceed as follows for each
sample/user:

- If the interval of N that contains the first point of N is
[Tl T<!] with i > 0, then we draw our sample uniformly
in this interval. This case is illustrated in Fig. 9 (Case 1).

- If the interval of N that contains the origin, [T, T¢al],
hosts a point of Ngs, then we draw a point uniformly in
[Tgall, Teall], 1f it belongs to [0, T{®!] then we select this point
as our sample (Fig. 10 - Case 2(a)). Otherwise, the point
that is obtained is T?S and not TES. Consequently, we con-
sider the next interval of Neg ([T, TS4'] with i > 0) that
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Case 2 The sample in our data set
Toe! Tl Teal Teal
T_1CB|| T4cal| Tscall Time
[e]
Our sample of T8
T8
Case2(a) Tyl 1Tl Tl Teal
T el oljr;m’ple T, T Time
O of T,ss
{Toes fTFS
Case 2 (b) Tl Tl Tl Tpeal
oo | o o—o “A—A
T el |<_ ............... T T Time
o Our sample of T8

Fig. 10. Case 2: there is a point of N¥ in the interval [T, Tf@!]. We draw a point
of Nps uniformly in this interval. It leads to two sub-cases: (Case 2(a)) if the point
is in [0, Tf!], then we consider it as our sample of TES, (Case 2(b)) if the point is
in [T, 0] then it corresponds to TF, so we look for the next interval that hosts
a point of Ngs ([T{®", T{%"] in the figure) and we distribute uniformly our sample of
T5 in this interval.
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Fig. 11. ICDF of T5.

contains a point of Ngg. Our sample is then the point uni-
formly distributed in this interval (Fig. 10 — Case 2(b)).

« From the collected samples, we calculate the empirical distri-
bution of TS ie. P(TES <x).

We also consider a lower and upper bound on the values of the
samples that allows to bound the real distribution of T]BS. For the
lower bound, we consider for each sample the beginning of the
interval [T, T¢l], thus Tl For the upper bound we consider
e

The inverse cumulative distribution function (ICDF) is shown in
Fig. 11. The ICDF under the classical expectation, shows that user
movements occurs between 0 and approximately 5400 s. The pro-
posed estimation thus offer an interesting trade-off between the
two bounds. The two bounds do not present negligible differences
with the approximated distribution. It can reach up a difference of

0.2 for the lower bound, and 0.15 for the upper bound.
7. Conclusion

This paper presented an analysis of calls in a cellular network
from a CDR trace. In the first part, we assess the statistical proper-
ties of these calls. We exhibit a cyclo-stationarity of the number of
calls per hour, with a lightweight different behavior in the week-
end. Also, the distribution obtained for call durations and inter-
arrivals have shown that the classical exponential distribution still
fit to the empirical one. It confirms the classical assumptions on

phone traffic. Moreover, our study gives example of current loads
observed in cellular networks that can be considered as input in
queuing models.

In the second part, we have proposed a method to study user
movements using Palm calculus. This theory offers a formal math-
ematical framework to obtain estimator on user movements. Con-
sequently, we have proposed methods to estimate the intensity
of user movements, a dependency test that allowed us to check
if calls and movements are correlated, and a method to generate
samples of user movements. A required property to apply this the-
ory is that the considered processes must be stationary. As it is
clearly not the case for our data set, we had to consider range of
2 h. It led to a proportion of samples with no movements that
could not be taken into account, and thus an overestimation of
user movements. Also, for moving users, the proposed dependency
test seems to show that their movements are correlated to their
calls.

Results of our study may be used in different ways. It can help
to consider practical parameters in simulations and models. Re-
sults on the dependency between calls and movements still need
to be improved. A more detailed characterization of this depen-
dency could help to propose models able to generate joint calls
and movements distribution. Also, we point out that our results
on the call durations contain a lot of information by its variability
through time and users. This quantity can help to improve mod-
els that describe social relationship between users. Taking advan-
tage of this parameter can lead to identify people, define con-
tacts between phone users, detect communities or predict links.
A more fundamental work could consist in extending this study
to non-stationary point process. The question is: may we rely on
the cyclo-stationarity of the processes to derive equivalent estima-
tors from Palm Calculus but applied to the full periods (complete
weeks, months, or year).
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