
A Study of Age and Gender seen through Mobile
Phone Usage Patterns in Mexico

Carlos Sarraute
Grandata Labs, Argentina
charles@grandata.com

Pablo Blanc
Mathematics Dept., FCEN, UBA

pblanc@dm.uba.ar

Javier Burroni
Grandata Labs, Argentina

javier.burroni@grandata.com

Abstract—Mobile phone usage provides a wealth of informa-
tion, which can be used to better understand the demographic
structure of a population. In this paper we focus on the popula-
tion of Mexican mobile phone users. Our first contribution is an
observational study of mobile phone usage according to gender
and age groups. We were able to detect significant differences in
phone usage among different subgroups of the population. Our
second contribution is to provide a novel methodology to predict
demographic features (namely age and gender) of unlabeled
users by leveraging individual calling patterns, as well as the
structure of the communication graph. We provide details of
the methodology and show experimental results on a real world
dataset that involves millions of users.

I. INTRODUCTION

Mobile phones have become prevalent in all parts of the
world, in developed as well as developing countries, and pro-
vide an unprecedented source of information on the dynamics
of the population on a national scale. In particular, mobile
phone usage is starting to be used to perform quantitative
analysis of the demographics of the population, respect to
key variables such as gender, age, level of education and
socioeconomic status (for example see [1], [2]).

In this work we combine two sources of information:
transaction logs from a major mobile operator in Mexico,
and information on the age and gender of a subset of the
population. This allows us to perform an observational study
of mobile phone usage, differentiated by gender and age
groups. This study is interesting in its own right, since it
provides knowledge on the structure and demographics of
the mobile phone market in Mexico. We can start to fill
gaps in our understanding of basic demographic questions:
Are inequalities between men and women, as reported by
[3], reflected in mobile phone usage (in calling and texting
patterns)? What are the differences in mobile phone usage
between different age ranges?

The second contribution of this work is to apply the
knowledge on calling patterns to predict demographic features,
namely to predict the age and gender of unlabeled users. We
present methods that rely on individual calling patterns, and
introduce a novel algorithm that exploits the structure of the
social graph (induced by communications), in order to improve
the accuracy of our predictions.

Being able to understand and predict demographic features
such as age and gender has numerous applications, from

market research and segmentation to the possibility of targeted
campaigns (such as health campaigns for women [4]).

The remainder of the paper is organized as follows: sec-
tion II provides an overview of the datasets that we used in this
study. Section III describes the observations that we gathered,
the insights gained from data analysis, and the differences
that could be seen in CDR features between genders and
age groups. In particular, very clear correlations have been
observed in the links between users according to their age. In
section IV we present the models that we used to identify the
age and gender of unlabeled users. We show the experimental
results obtained using classical Machine Learning techniques
based on individual attributes, both for gender and age. We
introduce a novel algorithm that leverages the links between
users both in its pure graph based form (section IV-D), and
combined form (section IV-E). The results of our experiments
show that the pure graph based algorithm has the best pre-
dictive power. Section V concludes the paper with ideas for
future work.

II. DATASET DESCRIPTION

The dataset used for this study consists of cell phone call
and SMS (Short Message Service) records collected in Mexico
for a period of M months (M = 3) by a large mobile
phone operator. The dataset is anonymized. For our purposes,
each CDR (Call Detail Record) is represented as a tuple
〈x, y, t, dur, d, l〉, where x and y are the encrypted phone
numbers of the caller and the callee, t is the date and time
of the call, dur is the duration of the call, d is the direction
of the call (incoming or outgoing, with respect to the mobile
operator client), and l is the location of the tower that routed
the communication. Similarly, each SMS record is represented
as a tuple 〈x, y, t, d〉.

We construct a social graph G =< NT , E >, based on
the aggregated traffic of M months. We use NT to denote
the set of mobile phone users that appear in the dataset. NT

contains about 90 million unique cell phone numbers. Among
the numbers that appear in NT , only some of them are clients
of the mobile phone operator: we denote that set NO.

For this study, we had access to basic demographic informa-
tion for a subset of the operator clients, that we denote NGT

(where GT stands for ground truth). The size of this labeled
set |NGT | is about 500,000 users. The following relation holds
between the three sets: NGT ⊂ NO ⊂ NT .
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Fig. 1. Pyramid of ages of the labeled set NGT , showing the number of
individuals for each age value (in years).

Fig. 1 shows the pyramid of ages of the labeled set.
This pyramid is different from the age pyramid of the entire
population, since it only contains mobile phone users (that
pertain to NGT ). Some basic observations on this pyramid:
there are more men (56.83%) than women (43.17%) in the
labeled set. The mean age is 37.23 years for men and 36.47
years for women.

III. OBSERVATIONAL STUDY

We report in this section the quantitative analyses that we
performed on the dataset, which provide the basis for the
prediction algorithms (which will be described in section IV).
Our raw data input are the transaction logs (that contain
billions of records at the scale of Mexico). A first step in
the study was to generate characterization variables for each
user, which summarize their individual and social behavior. We
also describe the preprocessing performed on the data, the key
features identified with PCA (Principal Component Analysis),
and the differences observed. We will focus on some examples
to illustrate the kind of observations we obtained for many
variables. Statistically significant differences have been found,
which motivates our attempt to identify gender and age based
on communication patterns.

A. Characterization Variables

In this study we chose to characterize the users in NO (i.e.
clients of the mobile operator), since for users in NT \NO we
can only see part of their calls and messages (those exchanged
with users in NO), thus including them would require a
different calibration. For users in NO, we computed the fol-
lowing variables which characterize their calling consumption
behavior (also called “behavioral variables” in [4]).
• Number of Calls. We consider incoming calls i.e., the

total number of calls received by user u during a period of
three months, as well as outgoing calls i.e., total number
of calls made by user u. Additionally, we distinguish

whether those calls happened during the weekdays (Mon-
day to Friday) or during the weekend; and we further split
the weekdays in two parts: the “daylight” (from 7 a.m. to
7 p.m.) and the “night” (before 7 a.m. and after 7 p.m.).
We thus have 3 × 4 variables for the number of
calls, given by the Cartesian product: [in, out, all] ×
[weekdaylight, weeknight, weekend, total].

• Duration of Calls. We calculate the total duration of
incoming calls and outgoing calls of user u during the pe-
riod of three months. As before, we distinguish between
weekdays (by daylight and by night) and weekends, to
get a total of 12 variables for the duration of calls.

• Number of SMS. We consider incoming messages (re-
ceived by user u) and outgoing messages (sent by user u).
Similarly we distinguish between weekdays (by daylight
and by night) and weekends, to get a total of 12 variables
for the number of SMS.

• Number of Contact Days. We consider the number of
days where the user has activity. We distinguish between
calls and SMS, and between incoming, outgoing or any
activity. This way we get 6 variables related to the number
of activity days.

We also computed variables which characterize the social
network of users based on their use of the cell phone (also
called “social variables” in [4]).
• In/Out-degree of the Social Network: The in-degree for

user u is the number of different phone numbers that
called or sent an SMS to that user. The out-degree is the
number of distinct phone numbers contacted by user u.

• Degree of the Social Network: The degree is the number
of unique phone numbers that have either contacted or
been contacted by user u (via voice or SMS).

B. Data Preprocessing

Many of the variables that we generated have a right skewed
or heavy tailed distribution. Our experiments showed that
this skewness affects the results given by Machine Learning
algorithms (described in section IV-B). Therefore as part of the
data preprocessing we also considered the logarithmic version
of the variables. We discuss this preprocessing in more detail
for one variable, that we use as running example: in-time-total,
i.e. the total duration of incoming calls for a given user.

As can be seen in Table I (left), the quartiles of the variable
in-time-total lie in different orders of magnitude, in particular
the ratio IQR/Q2 = (Q3 −Q1)/Q2 is well above 1.

To improve the results given by the Machine Learning
methods, we transform the data using the function T (x) =
log10(x+1). After the transformation, we found the statistics
in Table I (right). As we can see, the quartiles are in the same
order of magnitude, and the ratio IQR/Q2 is below 1. The
resulting distribution is shown in Fig. 2.

In conclusion, we decided to include both plain variables
as well as their logarithmic values, and let our Machine
Learning algorithms select which variables are most relevant
for modeling a given target variable (e.g. gender and age). We
also rescaled all variables to take values between 0 and 1.



TABLE I
STATISTIC SUMMARY FOR in-time-total AND ITS LOGARITHMIC

TRANSFORMATION

in-time-total (seconds) log(in-time-total + 1)

count 131770.00 131770.00
mean 16239.28 3.31
std 50023.16 1.23
min 0.00 0.00
25% 662.00 2.82
50% 3838.00 3.58
75% 14108.00 4.14
max 4045686.00 6.60
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Fig. 2. Histogram of log(in-time-total + 1). The distribution can easily be
seen as a mixture between a distribution with all its density in 0 (users that
have no incoming calls) and a bell shaped distribution for log(in-time-total+
1) > 0.

C. Insights on Key Features from PCA

We performed PCA (Principal Component Analysis) on
the characterization variables, in order to gain information
on which are the most important variables. This gave us
interesting insights on the key features of the data. We describe
the first 4 eigenvectors (which account for 89.6% of the
variance).

The first eigenvector retains 76.0% of the total variance.
This eigenvector is dominated by the logarithmic version1 of
the total number of calls, total duration of calls and total
number of SMS. This result shows that the level of activity of
users exhibits the highest variability, and therefore is a good
candidate to characterize users’ social behavior.

The second eigenvector, which retains 6.7% of the variance,
gives high positive coefficients to “outgoing” variables (num-
ber of outgoing calls, duration of outgoing calls, number of
SMS sent) and negative coefficients to “incoming” variables
(number of incoming calls, duration of incoming calls, number
of SMS received). This suggests that the difference of outgoing
minus incoming communications is also a good variable to
describe users’ social behavior.

The third eigenvector (with 4.4% of the variance) gives
positive coefficients to the “voice call” variables, and negative

1We note that in all eigenvectors, the logarithmic version of the variables
got systematically higher coefficients than the plain variables.

coefficients to the “SMS” variables (intuitively the difference
between voice and SMS usage is relevant).

The fourth eigenvector (with 2.5% of the variance) gives
positive coefficients to the “weeknight” and “weekend” vari-
ables (communications made non-working hours, i.e. during
the night or during the weekend), and negative coefficients to
“weeklight” variables (communications made during the day,
from Monday to Friday, which correspond roughly to working
hours).

D. Observed Gender Differences

We report in Table II the average of 6 key variables,
distinguished by gender. We know from PCA that the number
of calls, and the total duration of calls made by a user, char-
acterize their level of activity. A natural question is whether
differences can be observed between genders. We found that
for all the variables, there is a significant difference between
genders, with a very small p-value (p < 10−10). Recall that
these values are computed as the aggregation of calls during
a period of M = 3 months for users in NGT (about 500,000
users).

TABLE II
SAMPLE MEAN OF KEY VARIABLES FOR FEMALE AND MALE USERS. THE

DURATIONS ARE EXPRESSED IN SECONDS.

Variable Female Male

µ̂(total duration) 10038.75 10663.17
µ̂(total duration outgoing) 6359.96 7239.53
µ̂(total duration incoming) 3678.78 3423.64

µ̂(number of calls total) 72.847 81.348
µ̂(number of calls outgoing) 44.136 50.047
µ̂(number of calls incoming) 28.710 31.301

Table II shows that men have on average higher total
number of calls, and total duration of calls (measured in
seconds). However an interesting pattern can be seen when
we distinguish incoming and outgoing calls: the duration of
outgoing calls is higher for men, but the duration of incoming
calls is higher for women. It follows that the net duration
of calls (the difference between outgoing and incoming calls)
has a marked gender difference: the sample mean µ̂(net total
duration) = 3815.88 seconds for men, and µ̂(net total duration)
= 2681.18 seconds for women. We note that the number of
outgoing calls is higher than the number of incoming calls for
both men and women, due to a particularity of our dataset
(for all the users in NT the total number of incoming and
outgoing calls is the same, but for users in NGT there is a
higher proportion of outgoing calls).

We also compute the conditional probability p(g′|g) that
a random call made by an individual with gender g has a
recipient with gender g′, where we denote male by M and
female by F . For the calls originated by male users, we found
that p(F |M) = 0.3735 and p(M |M) = 0.6265. For the calls
originated by female users, we found that p(F |F ) = 0.4732
and p(M |F ) = 0.5268. We can see a difference between



genders, in particular men tend to talk more with men, and
women tend to talk more with women. More precisely:

p(M |F ) < p(M) = 0.5683 < p(M |M)

p(F |M) < p(F ) = 0.4317 < p(F |F )
(1)

Similar observations have been made in the case of the
Facebook social graph [5].

E. Observed Age Differences

We approached the study of mobile phone usage patterns
according to age by dividing the population in C = 4
categories: below 25 years, from 25 to 34 years, from 35 to
49 years, and 50 years or above. We use this same structure
for age prediction (in section IV-C).

Since we are dealing with more than 2 groups, comparing
differences between groups requires using the correct tool,
as the probability of making a type I error (null hypothesis
incorrectly rejected) increases. In order to compare the means
(of the log) of the variables for each age group, we conduct
a Tukey’s HSD (Honest Significant Difference) test. This
method tests all groups, pairwise, simultaneously. We found
a list of 20 variables for which the null hypothesis of same
mean (H0) is rejected for all pair of groups, i.e. µi 6= µj for
every i 6= j.

TABLE III
TUKEY HSD FOR THE VARIABLE log10(in-time-total + 1)

group1 group2 meandiff lower upper reject

0 1 0.1567 0.1328 0.1807 True
0 2 0.1326 0.1088 0.1564 True
0 3 0.2367 0.2122 0.2612 True
1 2 -0.0242 -0.0407 -0.0076 True
1 3 0.08 0.0625 0.0975 True
2 3 0.1041 0.0868 0.1214 True

We illustrate the difference between age groups for our
running example: in-time-total (total duration of incoming
calls per user). Table III show the result of Tukey HSD (where
FWER=0.05) for the variable log10(in-time-total+1), obtained
after the preprocessing step. The 4 age groups are labeled 0,
1, 2, 3. Pairwise comparisons are done for all combinations
(of group1 and group2). The null hypothesis is rejected for
all pairs; in other words, all the groups are found statistically
different respect to this variable.

In Fig. 3 we plot the distribution of log10(in-time-total+1)
for different pairs of age groups. The following results can be
observed from the plots:
• The distribution for the group of people aged over 50 is

shifted to the right in comparison with all the other age
groups. This implies that people from this age group do
talk more when called than people from any other age
group. Figures 3c, 3e, 3f.

• The distribution for the group of people aged below 25
is shifted to the left. This distribution shows less kurtosis
and a higher variance, meaning that this population is

more spread in different levels of log10(in-time-total+1).
Figures 3a, 3b, 3c.

0 1 2 3 4 5 6 7

log10(intimetotal)

0.0

0.1

0.2

0.3

0.4

0.5

n
o
rm

e
d
 d

e
n
si

ty

- 25

25 - 35

(a)

0 1 2 3 4 5 6 7

log10(intimetotal)

0.0

0.1

0.2

0.3

0.4

0.5

n
o
rm

e
d
 d

e
n
si

ty

- 25

35 - 50

(b)

0 1 2 3 4 5 6 7

log10(intimetotal)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

n
o
rm

e
d
 d

e
n
si

ty

- 25

+50

(c)

0 1 2 3 4 5 6 7

log10(intimetotal)

0.0

0.1

0.2

0.3

0.4

0.5

n
o
rm

e
d
 d

e
n
si

ty

25 - 35

35 - 50

(d)

0 1 2 3 4 5 6 7

log10(intimetotal)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

n
o
rm

e
d
 d

e
n
si

ty

25 - 35

+50

(e)

0 1 2 3 4 5 6 7

log10(intimetotal)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

n
o
rm

e
d
 d

e
n
si

ty

35 - 50

+50

(f)

Fig. 3. Pairwise comparison of log10(in-time-total+1) between different age
groups. The plots show the normed density for log10(in-time-total+1) > 0.

F. Links between Age Groups

We study here the links between users, according to their
age. Fig. 4 shows the matrix Ci,j that contains the number of
links between users of age i and age j. For each user u ∈ NGT ,
we compute the number of direct contacts of u that belong to
NGT and have age j. We sum over all the users of age i to get
the number Ci,j . As we can see in the figure, the diagonal of
the matrix has clearly higher values than the rest of it, meaning
that users are more likely to establish communications with
someone of their own age. This strong age homophily has
also been observed in [5], and in smaller social networks [6].

The communication preferences can also be seen in Fig. 5,
which shows the number of links according to the age differ-
ence between users. The highest number of links is observed
when the difference is δ = 0. The number of links decreases
with the age difference, except around the value δ = 21,
where an interesting inflection point can be observed; possibly
relating to different generations (e.g. parents and children).

IV. AGE AND GENDER PREDICTION

This section describes the models that we used to estimate
the age and gender of users found in the dataset NO \ NGT .
We show the results obtained using standard Machine Learning
models based on node attributes, applied to the prediction of
gender (section IV-B) and age (section IV-C). We introduce
a novel algorithm that leverages the communication network



Fig. 4. The matrix Ci,j of communications between users of age i and age
j (the ages are expressed in years).
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Fig. 5. Number of links as a function of the age difference between users.

topology to generate age predictions (section IV-D), and finally
show how it can be combined with the Machine Learning
models (section IV-E).

We note that the feature variables are known for the whole
set NO, while the target variables age and gender are known
only for users in the set NGT . We therefore use nodes
belonging toNGT for our training and validation set, to predict
both age and gender for the remaining users in NO.

A. Population Pyramid Scaling (PPS)

In the following subsections, we will present algorithms for
gender and age prediction which generate for each node, a
probability vector over the possible categories (gender or age
groups). At the end of their execution, when we “observe”
the system, we are required to collapse the probability vectors
to a specific gender or age group. Choosing how to perform
this collapse is not an obvious matter. In effect, we want to
collapse the probability state of the system as a whole and not
for each node independently. In particular, we want to impose
external constraints on our solution, namely that the gender
or age group distribution for the whole network be that of the
ground truth. To achieve this, we developed a method that we

Algorithm 1: Population Pyramid Scaling

1 foreach node i and group k do
2 compute the probability pi,k that node i belongs to

group k using the unconstrained algorithm;
3 end
4 Create an ordered list T of tuples (i, k, pi,k);
5 Sort list T in descending order by the column pi,k. The

list T will be iterated starting with the element with the
highest probability;

6 foreach element (i, k, pi,k) ∈ T do
7 if node i has not been assigned to a group then
8 if less than Nk nodes assigned to group k then
9 assign node i to group k;

10 end
11 end
12 end

call Population Pyramid Scaling. This algorithm takes, as a
hyper-parameter, the proportion q of nodes to be predicted.
For example, we use q = 1/2 to generate predictions for the
50% of nodes which got better classification results from the
unconstrained method.

The PPS procedure is described in Algorithm 1. Note that
the population to predict has size N = q × |NO|. For each
category k we compute the number of nodes Nk that should
be allocated to category k in order to satisfy the distribution
constraint (the gender or age distribution of NGT ), and such
that

∑C
k=1Nk = N (where C is the number of categories or

groups).

B. Gender Prediction

For gender prediction, several algorithms were evaluated,
with a preference for algorithms more restrictive respect to
the functions that they adjust. Some of the algorithms used
are: Naive Bayes, Logistic Regression, Linear SVM, Linear
Discriminant Analysis and Quadratic Discriminant Analysis.
As previously described, as part of data preprocessing, log
transformation of the variables are added and the values are
standardized to the [0, 1] interval.

TABLE IV
BEST CLASSIFIERS CONFIGURATION FOR GENDER PREDICTION

Algorithm Best configuration
LinearSVC dual = True; penalty = L2;

loss = L1; C = 1; k = 100;
| training set | = 200,000

LogisticRegression penalty = L1; C = 10; k = 100;
| training set | = 200,000

The best results were obtained with Linear SVM and
Logistic Regression. Table IV summarizes the classifiers con-
figuration. To find these parameters, we used grid search
over a predefined set of parameters. For instance, the pa-
rameter C for Logistic Regression takes its values in the



set {0.1, 0.3, 1, 3, 10}. Different number of attributes were
evaluated before training the model (k ∈ {10, 30, 100}).
The labeled nodes were split in a training set (70%) and a
validation set (30%).

TABLE V
PRECISION OBTAINED FOR GENDER PREDICTION

Parameter q 1 1/2 1/4 1/8

Accuracy 66.3% 72.9% 77.1% 81.4%

After performing PPS (to ensure the correct proportion of
men and women), we obtained the results shown in Table V.
As expected, the accuracy of our predictions improve when we
decrease the parameter q, which provides a trade-off between
precision and coverage. We reach a precision of 81.4% when
tagging 12.5% of the users.

In the following paragraphs, we briefly recall some details of
the classifiers that gave the best results, in order to clarify the
meaning of the configuration parameters in Table IV. Those
parameters are the ones required by the Scikit-learn library [7].
In addition, Pandas [8] and Statsmodels [9] have been used for
the exploratory analysis.

1) Linear SVC: Classification using Support Vector Ma-
chines (SVC) requires optimizing the following function [10]:

min
ω

1

2
ωTω + C

l∑
i=1

ξ(ω, xi, yi) (2)

where yi is the gender value and xi is the vector of normalized
observed variables; ω describes the hypothesis function, and C
is the regularization parameter. In our case, we choose to use
ξ(ω, xi, yi) = max(1 − yi, ωTxi, 0). This setup is called L1-
SVM as ξ(·) defines the loss function. Implementation details
can be found in [7], [10], [11].

2) Logistic Regression: A standard way to estimate discrete
choice models is using index function models. We can specify
the model as y∗ = ωx+ε, where y∗ is an unobserved variable.
We use the following criteria to make a choice:{

y = 1 = Female if y∗ > 0

y = 0 = Male if y∗ < 0

Additionally, we use L1 regularization (for feature selection
and to reduce overfitting). The complete formulation is to
optimize:

min
ω
‖ω‖1 + C

l∑
i=1

ξ(ω, xi, yi)

where ξ(ω, xi, yi) = log(1 + exp(−yiωTxi)). For more
information refer to [7], [11], [12].

C. Age Prediction using Node Attributes

We now tackle the problem of detecting the age of the users
using the properties of the nodes (users). As a first approach,
we use the Machine Learning armory to perform the detection.
In order to reduce the complexity of the target variable, we

partition it into C age categories (C = 4): below 25 years
old, from 25 to 34 years old, from 35 to 49 years old, and
50 years old or above (as in section III-E). Given this set
of categories, we found the best results using Multinomial
Logistic (MNLogistic). This method is a generalization of
Logistic Regression for the case of multiples categories (refer
to [9], [12]).

A problem we encountered when using MNLogistic is the
overfitting to the categories with higher frequencies, in this
case the classification in categories 25 to 34 years and 35 to
49 years of more elements than expected. In effect, in our
Training Set, the age groups have the following distribution:

Age group 10-25 25-35 35-50 50+

Population 12.1% 35.45% 37.45% 15%

But when using the MNLogistic algorithm, we obtained pre-
dictions with the following distribution:

Age group 10-25 25-35 35-50 50+

Population 0.66% 52.97% 45.52% 0.84%

To solve this issue we used the PPS (Population Pyramid
Scaling) method of section IV-A. After performing PPS, we
obtained the results presented in Table VI (in section IV-F).

D. Age Prediction using Network Topology

As discussed in section III-F, there is a strong age ho-
mophily among nodes in the communication network, yet
the Machine Learning algorithms we have employed so far
are mostly blind to this information, that is, their predictive
power relies solely on user attributes ignoring the complex
interactions given by the mobile network they participate in.

In this section we propose an algorithm which can harness
the information given by the structure of the mobile network
and in this way, leverage hidden information as the homophily
patterns (shown in Fig. 4).

1) Communication Network Structure: We briefly describe
how we construct the communication network G. To each user
(phone number) we assign a node in the network, and to each
pair of users x and y communicating via voice calls or SMS we
assign a link (noted x ∼ y). We can also assign a weight wx,y

to each link between user x and user y, expressing the number
of communications, the total activity or any other property of
the link. In the present study we choose to set wx,y = 1
if there is any kind of communication between nodes x and
y, and wx,y = 0 otherwise. We do this both to reduce the
complexity of the analysis, and because as a first approach,
we are interested in exploring how the bare network topology
enhances our predictions of the target variable.

2) Reaction-Diffusion Algorithm: In our dataset, we have
the values for the target variable (age) of the nodes in NGT ,
and we can also see from Fig. 4 that neighbouring nodes
are more likely to belong to the same age category. A math-
ematical model that can take advantage of this information
together with the topology of the network to infer the target



values for the remaining nodes (in NO \ NGT ) is that of a
diffusion process in a graph. At each time step the information
(value of target variable at a given node) is diffused or spread
to its neighbours. In this way, given enough time steps, the
information from nodes in NGT is diffused to the entire
network. Now, if |NGT | � |NO|, which is the case in our
study, pure diffusion may not be strong enough to have the
information in NGT significantly affect the values of the target
variables in the entire network. To remedy this, we include a
reactive term in our algorithm where at each time step, nodes
in NGT are reinforced with their value at time t = 0. Given
that we have partitioned our target variable in C categories,
we also found it advantageous to model our reaction-diffusion
process as one where the information being diffused is the
probability distribution for each node (noted gx,t) to belong
to each category. We detail the algorithm below.

For each user x we define the initial state fx ∈ RC (where
C is the number of categories) as having components

(fx)i =

{
δi,a(x) if x ∈ NGT

1/C if x 6∈ NGT

(3)

where a(x) is the age category of user x and δi,a(x) is the
Kronecker delta function. Then we define gx,t as

gx,0 = fx

gx,t = (1− λ) fx + λ

∑
x∼y wy,x gy,t−1∑

x∼y wy,x

(4)

where x ∼ y means that there is a link between x and y; wy,x

is the weight of the link; and λ is a hyper-parameter which
tunes the relative strength of the reinforcement and diffusion
terms (which we set to λ = 0.5 in our experiments). Note that
gx,t ∈ RC is the discrete probability measure for node x at
time t, in particular the sum

∑C
i=1(gx,t)i = 1 ∀x, t.

As previously stated, these equations are similar to those of
a reaction-diffusion process (we note that it can also be seen
as a Jacobi method for the appropriate linear system). For the
experimental results, we consider a simpler model by taking
wy,x = 1 ∀x ∼ y and 0 otherwise. The equation for gx,t
becomes

gx,t = (1− λ) fx + λ

∑
x∼y gy,t−1

|{y : x ∼ y}|
. (5)

We iterate this process m times (for 1 ≤ t ≤ m). In
our experiments, m = 30 was sufficient for the process to
converge.

For each x, we obtain a vector gx = gx,m. With this we can
get a prediction for the age of x given by argmax1≤i≤4(gx)i.
This prediction, in contrast with the prediction performed
the MNLogistic model (based on node attributes), gave us a
population pyramid closer to the ground truth:

Age group 10-25 25-35 35-50 50+

Population 7.26% 32.42% 50.49% 10.36%

After adjusting the distribution with the PPS algorithm (from
section IV-A), we obtained the results shown in Table VI.

E. Enriching the Graph Algorithm with Node Attributes

We propose here an algorithm to predict the age of users
that leverages the PPS algorithm, the node classification of
section IV-C and the pure graph-based Reaction-Diffusion
algorithm. We define as initial state:

fx =

{
δi,a(x) if x ∈ NGT

ML(x) if x 6∈ NGT

(6)

where ML(x) is the result given by the best Machine Learning
algorithm of section IV-C (i.e. Multinomial Logistic).

Then, as before, the iterative process follows Equation (5).
In this case, the hyper-parameter λ provides a trade-off be-
tween the information from the network topology and the
initial information obtained with Machine Learning methods
over node attributes (here again we take λ = 0.5).

F. Summary of Results

Finally, Table VI summarizes the results obtained with the
different methods: Machine Learning (ML) alone, Reaction-
Diffusion (RDif) alone, and the combined method (ML +
RDif). We report for each case the accuracy obtained, that
is the percentage of correct predictions on the validation set.

TABLE VI
PRECISION OBTAINED FOR AGE PREDICTION

Population ML RDif ML + RDif

q=1 36.9% 43.4% 38.1%
q=1/2 42.9% 47.2% 46.3%
q=1/4 48.4% 56.1% 52.3%
q=1/8 52.7% 62.3% 57.2%

The table shows that taking a smaller q improves the
accuracy of the results. Our experiments also show that
the RDif (Reaction-Diffusion) algorithm outperforms the ML
predictions based on node attributes. It is also interesting to
remark that the RDif algorithm outperforms the combined
method. The best precision obtained is 62.3% of correctly
predicted nodes, when tagging 12.5% of the population. Note
that random guessing the age group (between 4 categories)
would yield a precision of 25%.

V. CONCLUSION AND FUTURE WORK

To our knowledge, this work provides the first extensive
study of social interactions in the country of Mexico focusing
on gender and age, based on mobile phone usage. From a soci-
ological perspective, the ability to analyze the communications
between tens of millions of people allows us to make strong
inferences and detect subtle properties of the social network.

As described in section III, the graph we constructed has
very rich link semantics, containing a detailed description of
the communication patterns (45 characterization variables).
With PCA, we found that most of the variance of the character-
ization variables is contained in a low dimensional subspace.
Motivated by these results, we focused on how the statistical
properties of the most informative attributes vary with both



gender and age. In section III-D, we make two interesting
observations: (i) there is a gender homophily in the communi-
cation network (see Equation 1); (ii) an asymmetry respect to
incoming and outgoing calls can be observed between men and
women, possibly reflecting a difference of roles in Mexican
society (it would be interesting to see how these differences
change in other regions like Europe or the United States).
We also compared communication habits for different age
groups, and found statistically significant differences. Finally,
our most important observational contribution is the study of
correlations between age groups in the communication net-
work, as summarized in Fig. 4 and 5. We observe a strong age
homophily [6], and a strong concentration of communications
centered around the age interval between 25 and 45 years.
But we also notice weaker modes in both figures, which raise
interesting sociological questions (e.g. whether they reflect a
generational gap).

The second key contribution of this work was to study
and propose novel methods to infer the gender and age of
users in the mobile network. As a first approach, described in
sections IV-B and IV-C, we used a set of standard Machine
Learning tools finding that Logistic Regression and Linear
Support Vector Machine algorithms gave us the best results.
However, these techniques cannot harness the topological
information of the network to explore possible correlations
between the users’ age groups. To leverage this information,
we proposed an purely graph based algorithm inspired in a
reaction-diffusion process, and demonstrated that with this
methodology we could predict the age category for a signif-
icant set of nodes in the network. Our experiments showed
that the reaction-diffusion method provides the best predictive
power on a real-world large scale dataset.

There are multiple directions in which this work can be
extended. We highlight the following:

a) Analysis of Hyper Parameters: The analysis of the
prediction performance as a function of the hyper-parameters
q and λ, used in sections IV-C and IV-D, is important for
a fine tuning of the algorithm. We are also interested in
studying the effect of variations in the weights wx,y used in
the diffusion process (e.g. use the intensity of communication
or the geolocation data to weight the links). In particular, we
want to explore how the network topology information can be
combined with nodes features to improve the joined (ML +
RDif) methodology.

b) Extend Depth: A statistics quasi-experiment can be
built from this method [13]. In this case, we want to know
whether the differences in the observed behavior can be
accounted to gender and age, or are consequences of differ-
ences in the ego-network induced by phone calls. This quasi-
experiment can be performed using Propensity Score [14], and
may provide sociological insights.

c) Extend Width: One direction that we are currently
investigating is to apply the methodology presented here to
predict variables related to the users’ spending behavior. In
[15] the authors show correlations between social features
and spending characterizations, for a small population (52

individuals). We are interested in applying our methodology
to predict spending behavior characteristics on a much larger
scale (millions of users).

Another research direction is to use the geolocation infor-
mation contained in the Call Details Records. Recent studies
have focused on the mobility patterns related to cultural events
–for instance sport related events [16], [17]– which might
exhibit differences between genders and age groups. Looking
at mobility patterns through the lens of gender and age
characterization will provide new features to feed the Machine
Learning part of our methodology, and more generally will
provide new insights on the human dynamics of different
segments of the population.
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